

Rocky Flats Site

Quarterly Report of Site Surveillance and Maintenance Activities First Quarter Calendar Year 2007

July 2007

Office of Legacy Management

U.S. Department of Energy Office of Legacy Management

Rocky Flats Site

Quarterly Report of Site Surveillance and Maintenance Activities

First Quarter Calendar Year 2007

July 2007

Work performed by S.M. Stoller Corporation under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado.

Contents

Acro	nyms	and Abb	reviations		ix
Exec	utive	Summary	7		xi
1.0	Intro	duction.			. 1–1
	1.1	Purpose	and Scope		. 1–1
	1.2	Backgro	ound		. 1–2
	1.3				
		1.3.1	Water and	Air Data	1–2
		1.3.2	Ecology D	ata	1–3
2.0	Site	Operatio		ntenance	
	2.1	Pond O	perations		. 2–1
	2.2	Landfill	ls		. 2–1
		2.2.1	Present La	ndfill	2–1
			2.2.1.1	Inspection Results	. 2–2
			2.2.1.2	Slumps	. 2–2
			2.2.1.3	Settlement Monuments	
		2.2.2	Original L	andfill	2–3
			2.2.2.1	Inspection Results	. 2–3
			2.2.2.2	Seeps	
			2.2.2.3	Slumps.	
			2.2.2.4	Settlement Monuments	
	2.3	Ground	Water Plur	ne Treatment Systems	
		2.3.1		e Plume Treatment System	
		2.3.2		hes Plume Treatment System	
		2.3.3		ls Plume Treatment System	
	2.4	Erosion		d Revegetation	
		2.4.1		ts Annual Inspection	
	2.5	General	-	enance and Operations	
		2.5.1	RFS Road	Upgrades	2–6
		2.5.2		ty	
			2.5.2.1	Fence Maintenance and Construction	. 2–6
			2.5.2.2	Security Issues	. 2–6
3.0	Env	ironment	al Monitorii	ng	. 3–1
	3.1	Water N	Monitoring.		. 3–1
		3.1.1	Water Mon	nitoring Highlights	3–1
		3.1.2	POC Moni	toring	3–2
			3.1.2.1	Location GS01	. 3–5
			3.1.2.2	Location GS03	. 3–7
			3.1.2.3	Location GS08	. 3–9
			3.1.2.4	Location GS11	3–12
			3.1.2.5	Location GS31	3–14
		3.1.3	POE Moni	toring	3–16
			3.1.3.1	Location GS10	
			3.1.3.2	Location SW027	3–29
			3.1.3.3	Location SW093	3–32
		3.1.4	Area of Co	oncern Wells and SW018	3–35
			3.1.4.1	Data Evaluation	3–35

	3.1.5	Boundary Wells	3–36
		3.1.5.1 Data Evaluation.	
	3.1.6	Sentinel Wells	
		3.1.6.1 Data Evaluation.	
	3.1.7	Evaluation Wells	3–38
		3.1.7.1 Data Evaluation.	. 3–41
	3.1.8	Investigative Monitoring.	
		3.1.8.1 Data Evaluation	
	3.1.9	Present Landfill Monitoring	
		3.1.9.1 Data Evaluation.	
	3.1.10	Original Landfill Monitoring	3–43
		3.1.10.1 Data Evaluation	. 3–44
	3.1.11	Ground Water Treatment System Monitoring	3–44
		3.1.11.1 MSPTS	
		3.1.11.2 Data Evaluation	. 3–45
		3.1.11.3 ETPTS	. 3–45
		3.1.11.4 Data Evaluation	. 3–46
		3.1.11.5 SPPTS	. 3–46
		3.1.11.6 Data Evaluation	. 3–46
		3.1.11.7 Present Landfill Treatment System	3–47
		3.1.11.8 Data Evaluation	. 3–48
	3.1.12	Pre-Discharge Monitoring	
		3.1.12.1 Data Evaluation	
3.2	_	ical Monitoring	
	3.2.1	Regulatory Reporting and Other Issues	
	3.2.2	Regulatory Project Support	
	3.2.3	Revegetation	
	3.2.4	Erosion Control/Reseeding	
	3.2.5	Weed Control/Monitoring	
	3.2.6	Wetland Maintenance/Plantings	
3.3		A Ecological Sampling	
40 D.C	3.3.1	Data Evaluation	
4.0 Refer	rences		4–1
		Figures	
Figure 3–1.		Water Monitoring Locations and Precipitation Gages: First Quarter of 007	3–3
Figure 3–2.	Volu	me-Weighted 30-Day Average Pu and Am Activities at GS01: Calendar	•
	Year	Ending First Quarter of CY 2007	
Figure 3–3.		me-Weighted 30-Day Average Total U Activities at GS01: Calendar	
		Ending First Quarter of CY 2007	
Figure 3–4.		me-Weighted 30-Day Average Pu and Am Activities at GS03: Calendar	
	Year	Ending First Quarter of CY 2007	3–8
Figure 3–5.	Volu	me-Weighted 30-Day Average Total U Activities at GS03: Calendar	
	Year	Ending First Quarter of CY 2007	3–9

Figure 3–6.	Volume-Weighted 12-Month Rolling Average Pu and Am Activities at	
		3–10
Figure 3–7.	Volume-Weighted 12-Month Rolling Average Total U Activities at GS08:	
	Calendar Year Ending First Quarter of CY 2007	3–11
Figure 3–8.	Volume-Weighted 12-Month Rolling Average Nitrate+Nitrite as N	
	Concentrations at GS08: Calendar Year Ending First Quarter of CY 2007	3–11
Figure 3–9.	Volume-Weighted 12-Month Rolling Average Pu and Am Activities at	
	GS11: Calendar Year Ending First Quarter of CY 2007	3–13
Figure 3–10.	Volume-Weighted 12-Month Rolling Average Total U Activities at GS11:	
	Calendar Year Ending First Quarter of CY 2007	3–13
Figure 3–11.	Volume-Weighted 12-Month Rolling Average Nitrate+Nitrite as N	
	Concentrations at GS11: Calendar Year Ending First Quarter of CY 2007	3–14
Figure 3–12.	Volume-Weighted 12-Month Rolling Average Pu and Am Activities at	
	GS31: Calendar Year Ending First Quarter of CY 2007	3–15
Figure 3–13.	Volume-Weighted 12-Month Rolling Average Total U Activities at GS31:	
		3–16
Figure 3–14.	Volume-Weighted Average Pu and Am Compliance Values at GS10:	
8	Calendar Year Ending First Quarter of CY 2007	3–18
Figure 3–15.	Volume-Weighted Average Total U Compliance Values at GS10: Calendar	
8	Year Ending First Quarter of CY 2007	3–19
Figure 3–16	Volume-Weighted Average Metals Compliance Values at GS10: Calendar	5 17
118410 3 10.	Year Ending First Quarter of CY 2007	3–20
Figure 3–17	POE Monitoring Station GS10: Compliance Values and Individual Sample	J 2 0
rigare 5 17.		3-23
Figure 3–18	POE Monitoring Station GS10: Hydrograph and Individual Sample Results	J 2 J
riguic 5 10.	for Total U (January 1, 1997–April 30, 2007)	3_23
Figure 3–10	Average Annual Total U Concentrations at GS10: 1997–2007	
	Annual Total U Loads at GS10: 1997–2007	
	Variation of Total U Concentration with Flow Rate at GS10: 1997–2007	
_	POE Monitoring Station GS10: Hydrograph and Individual Sample Results	3 41
riguic 3 22.	for Hardness (January 1, 1997–April 30, 2007)	2 28
Figure 2-22	Volume-Weighted Average Pu and Am Compliance Values at SW027:	J-20
rigule 3 23.		3-30
Figure 2-24		3-30
Figure 5-24.	Volume-Weighted Average Total U Compliance Values at SW027: Calendar Year Ending First Quarter of CY 2007	3–30
Eiguro 2 25		3-30
Figure 3–23.	Volume-Weighted Average Metals Compliance Values at SW027: Calendar	2 21
Eigurg 2 26	Year Ending First Quarter of CY 2007	3-31
Figure 3–26.	Volume-Weighted Average Pu and Am Compliance Values at SW093:	2 22
E: 2.27	Calendar Year Ending First Quarter of CY 2007	3-33
Figure $3-27$.	Volume-Weighted Average Total U Compliance Values at SW093: Calendar	2 22
F: 0.00	Year Ending First Quarter of CY 2007	3–33
Figure 3–28.	Volume-Weighted Average Metals Compliance Values at SW093: Calendar	2 2 1
T. 0.00	Year Ending First Quarter of CY 2007	
Figure 3–29	RFS Revegetation Areas	3-51

Tables

Table 2–1.	First Quarter of CY 2007 Pond Water Transfers/Discharges	2-1
Table 3–1.	Sampling and Data Evaluation Protocols at POCs	
Table 3–2.	Annual Volume-Weighted Average Radionuclide Activities at GS01 for	
T 11 2 2	1997–2007	3–6
Table 3–3.	Annual Volume-Weighted Average Radionuclide Activities and	•
	Nitrate+Nitrite as N Concentrations at GS03 for 1997–2007	3–8
Table 3–4.	Annual Volume-Weighted Average Radionuclide Activities and	
	Nitrate+Nitrite as N Concentrations at GS08 for 1997–2007	3–10
Table 3–5.	Annual Volume-Weighted Average Radionuclide Activities and	
	Nitrate+Nitrite as N Concentrations at GS11 for 1997–2007	3–12
Table 3–6.	Annual Volume-Weighted Average Radionuclide Activities at GS31 for	
	1997–2007	3–15
Table 3–7.	1 6	3–16
Table 3–8.	Annual Volume-Weighted Average Radionuclide Activities at GS10 for	
	1997–2007	3–17
Table 3–9.	Annual Volume-Weighted Average Hardness and Metals Concentrations at	
	GS10 for 1997–2007	3–19
Table 3–10.	Reportable 12-Month Rolling Average Values for POE Monitoring Location	
	GS10	3-21
Table 3–11.	Recent Analytical Results for Composite Samples Collected at GS10	3-21
Table 3–12.	U Concentrations and Isotopic Signatures from Samples Collected at GS10 as	
	Reported by LANL	3-25
Table 3–13.	Annual Volume-Weighted Average Radionuclide Activities at SW027 for	
	1997–2006	3–29
Table 3–14.	Annual Volume-Weighted Average Hardness and Metals Concentrations at	
	SW027 for 1997–2007	3–31
Table 3–15.	Annual Volume-Weighted Average Radionuclide Activities at SW093 for	
	1997–2007	3-32
Table 3–16.	Annual Volume-Weighted Average Hardness and Metals Concentrations at	
	SW093 for 1997–2007	3–34
Table 3–17.	Sampling and Data Evaluation Protocols at AOC Wells and SW018	
	Sampling and Data Evaluation Protocols at Boundary Wells	
	Sampling and Data Evaluation Protocols at Sentinel Wells	
	Sampling and Data Evaluation Protocols at Evaluation Wells	
	Sampling and Data Evaluation Protocols at Investigative Monitoring	. 5 5)
14010 3 21.	Locations	3–42
Table 3-22	Sampling and Data Evaluation Protocols at PLF RCRA Monitoring Wells	
	Sampling and Data Evaluation Protocols at PEF Refer Monitoring Wells	. 5 45
1 abic 5 25.	Locations	3–44
Table 3-24	Sampling and Data Evaluation Protocols at OLF RCRA Monitoring Wells	
	Sampling and Data Evaluation Protocols at OEF REAT Monitoring Wens	
	Sampling and Data Evaluation Protocols at MSF13 Monitoring Locations	
	Sampling and Data Evaluation Protocols at SPPTS Monitoring Locations	
	Special Sampling of SPPTS Monitoring Locations in First Quarter 2007	
	Sampling and Data Evaluation Protocols at PLFTS Monitoring Locations	
1 able $3-30$.	First Quarter of CY 2007 Routine Grab Sampling at the PLF	<i>5</i> –48

	Sampling and Data Evaluation Protocols at Pre-Discharge Monitoring Locations
	Appendixes
1 1	Analytical Results for Water Samples–First Quarter of CY 2007
Appendix B.	Information for Composite Samples with Unavailable Data (Data for all composite samples were available for this report)
Appendix C.	Landfill Inspection Forms
Appendix D.	Data Evaluation Flowcharts Reproduced from the RFLMA and the RFSOG

End of current text

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page viii

Acronyms and Abbreviations

silver Ag

Am americium-241 Area of Concern AOC

Be beryllium

BMP best management practice

Corrective Action Decision/Record of Decision CAD/ROD

Chemical Abstracts Service CAS

Cd cadmium CD compact disk

Colorado Department of Public Health and Environment CDPHE

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of

1980 (42 USC 9601, et seq.)

Colorado Hazardous Waste Act **CHWA**

CMS-FS Corrective Measures Study-Feasibility Study

Central Operable Unit COU

Cr chromium CY calendar vear DER duplicate error ratio

DOE

U.S. Department of Energy

EPA U.S. Environmental Protection Agency East Trenches Plume Treatment System **ETPTS**

FC **Functional Channel**

Geographic Information System GIS global positioning system **GPS GWIS** ground water intercept system

mercury Hg

HR ICP/MS high-resolution inductively coupled plasma/mass spectrometry

Individual Hazardous Substance Site **IHSS** Interim Measure/Interim Remedial Action IM/IRA

Integrated Monitoring Plan IMP Los Alamos National Laboratory LANL Office of Legacy Management LM

MG million gallons milligrams per liter mg/L

MSPTS Mound Site Plume Treatment System NREL National Renewable Energy Laboratory

Original Landfill OLF OU Operable Unit picocurie pCi

picocuries per liter pCi/L Present Landfill **PLF**

PLFTS Present Landfill Treatment System Preble's meadow jumping mouse **PMJM**

Point of Compliance POC Point of Evaluation POE

PQL practical quantitation limit Pu plutonium-239,240 QA quality assurance QC quality control

RCRA Resource Conservation and Recovery Act (42 USC 6901, et seq.)

RFCA Rocky Flats Cleanup Agreement

RFETS Rocky Flats Environmental Technology Site

RFI-RI RCRA Facility Investigation-Remedial Investigation

RFLMA Rocky Flats Legacy Management Agreement

RFP Rocky Flats Site Plant RFS Rocky Flats Site

RFSOG Rocky Flats Site Operations Guide

RI/FS Remedial Investigation/Feasibility Study

RPD relative percent difference SED Sitewide Ecological Database

SEEPro Site Environmental Evaluation for Projects

SID South Interceptor Ditch

Site Rocky Flats Site

SPPTS Solar Ponds Plume Treatment System SVOC semivolatile organic compound

SWD Soil Water Database

TIMS thermal ionization mass spectrometry

TSS total suspended solids μg/L micrograms per liter

U uranium

USFWS U.S. Fish and Wildlife Service VOC volatile organic compound

Executive Summary

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) has assumed responsibility of all surveillance and maintenance activities at the Rocky Flats Site (Site) to continue protection of human health and the environment. To accomplish this, the accelerated actions that were completed by the DOE Office of Environmental Management will be maintained and any monitoring and maintenance requirements will be conducted as described in the Rocky Flats Legacy Management Agreement (RFLMA; DOE 2007c). Attachment 2 to the RFLMA defines what monitoring and maintenance are required, the frequency for each required activity, and the monitoring and maintenance locations. These surveillance and maintenance requirements include environmental monitoring; maintenance of the erosion controls, landfill covers, dams, and ground water treatment systems; and operation of the ground water treatment systems.

An administrative highlight for this quarter was the completion of the Rocky Flats Site Operations Guide (RFSOG; DOE 2007b), prepared by DOE-LM, as a document to guide work at the Site. The RFSOG provides details on the surveillance and maintenance needed to satisfy the requirements of RFLMA as well as best management practices at the Site.

This report addresses all surveillance and maintenance activities conducted at the Site during the first calendar quarter of 2007 (January 1 through March 31).

Highlights of the surveillance and maintenance activities include:

- Routine pond operations and management;
- Maintenance and inspection of the Original and Present Landfills;
- Maintenance and inspection of the four ground water treatment systems;
- RFLMA Annual Site Inspection;
- Erosion control and revegetation activities;
- General Site maintenance and operations including road upgrades, Central Operable Unit fence construction, and Site security;
- Non-routine (project-specific) and routine (per RFLMA and the RFSOG) water monitoring:
- Ecology activities during the first quarter of 2007; and
- RFLMA ecological sampling.

End of current text

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page xii

1.0 Introduction

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is responsible to implement the final response action selected in the Final Corrective Action Decision/Record of Decision (CAD/ROD) (EPA 2006) issued September 29, 2006, for the Rocky Flats Site. Prior to the CAD/ROD, cleanup and closure activities were completed in accordance with the requirements of the Rocky Flats Cleanup Agreement (RFCA) (CDPHE et al. 1996). This report describes environmental monitoring, maintenance, and associated operations that were conducted during the period January 1 through March 31, 2007 (first quarter of calendar year [CY] 2007).

Under the CAD/ROD, two Operable Units (OUs) were established within the boundaries of the Rocky Flats property: the Peripheral OU (POU) and the Central OU (COU). The COU consolidates all areas of the site that require additional remedial/corrective actions, while also considering practicalities of future land management. The POU includes the remaining, generally unimpacted portions of the site, and surrounds the COU. The response action in the final CAD/ROD is no action for the POU, and institutional and physical controls with continued monitoring for the COU.

The Rocky Flats Legacy Management Agreement (RFLMA), signed March 14, 2007, superseded RFCA. RFLMA is a Federal Facility Agreement and Consent Order under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and Colorado Hazardous Waste Act (CHWA), between DOE, the U.S. Environmental Protection Agency (EPA) Region 8, and the Colorado Department of Public Health and Environment (CDPHE). The purpose of RFLMA is to establish the regulatory framework for implementing the CAD/ROD final response action and ensuring that it remains protective of human health and the environment. The monitoring, surveillance, and maintenance activities for which quarterly, annual, and 5-year review reports are issued are included in RFLMA Attachment 2, Legacy Management Requirements.

Therefore, this report includes the results of surveillance, including water monitoring, and maintenance activities conducted under RFCA and subsequently conducted under the CAD/ROD and RFLMA. These surveillance and maintenance requirements include environmental monitoring; maintenance of the erosion controls, access controls (fences), landfill covers, dams, and ground water treatment systems; and operation of the ground water treatment systems. This report includes all data evaluation as required by the 2006 RFCA Integrated Monitoring Plan (IMP), which underwent revision during this period (DOE 2006c, 2006d). For water monitoring, data evaluation is limited to those locations that remained after the CAD/ROD as part of the LM water-monitoring network. RFLMA requirements replace the RFCA IMP.

1.1 Purpose and Scope

This report is required by Section 7.0 of Attachment 2 to RFLMA. The purpose of this report is to inform the regulatory agencies and stakeholders regarding the surveillance and maintenance activities being conducted at the Site. DOE-LM is committed to periodic communications such as this report and through other means such as web-based tools and public meetings.

This report focuses on routine maintenance and monitoring activities that were conducted during the first quarter of CY 2007.

1.2 Background

Surveillance and maintenance activities, including environmental monitoring, are conducted according to RFLMA. RFLMA references applicable operational, monitoring, and maintenance plans for the landfills, ground water treatment systems, and ponds. Plans applicable to this report and referenced in the Rocky Flats Site Operations Guide (RFSOG) include:

- Operations and Maintenance Plan for Rocky Flats Surface Water Control Project (DOE 2007e)—in production;
- Ground Water Plume Treatment Systems Operations and Maintenance Manual (DOE 2007d);
- Final Landfill Monitoring and Maintenance Plan, Rocky Flats Environmental Technology Site, Original Landfill (DOE 2006b);
- Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan (DOE 2006c);
- Rocky Flats Site, Colorado Revegetation Plan (DOE 2005b);
- Rocky Flats Site Erosion Control Guidelines (DOE 2006a);
- Rocky Flats, Colorado Site Vegetation Management Plan (DOE 2005c);
- Ecological Monitoring Methods Handbook (DOE 2007g); and
- Annual Rocky Flats Site Ecological Field Sampling Plan (DOE 2007f).

1.3 Data Management

1.3.1 Water and Air Data

Data from samples submitted to an analytical laboratory are received as both hard copy and as an electronic data deliverable. The electronic data are loaded into an Oracle-based relational database. The environmental monitoring data are accessible using the Site Environmental Evaluation for Projects (SEEPro) application. The hard-copy analytical reports are archived in the Site records library in Grand Junction, Colorado, along with the original field data forms and other relevant hard-copy forms or documents containing project data. Well construction and lithology logs are maintained for previously drilled wells and are produced for all new wells drilled. These logs are archived in the Site records library and can also be accessed electronically via the SEEPro database and the Geospatial Environmental Mapping System.

SEEPro uses Oracle[®] software for data management and Microsoft[®] Access for data retrieval and display. It compiles water quality, air quality, field parameter, sample tracking, sample location, and water level data for ground water, surface water, boreholes, soils, and sediment samples. Field parameter data include such information as sample location, sample date, pH, turbidity, conductivity, and temperature. Chemical information (Chemical Abstracts Service [CAS] registry numbers, analytical results, and detection limits) is also included. Specific procedures for verification of database information received from subcontractors, or input directly into SEEPro, are followed. These procedures provide quality assurance (QA)

documentation, which ensures that available data have been incorporated and entered or uploaded properly into SEEPro. Data integrity is maintained with standardized error checking routines used when loading data into SEEPro. Other procedures address database system security and software change control.

The RFS field data are entered through the FieldPar field data entry system. This system is a data entry module that is compatible with the SEEPro database, and is used in the office by field personnel. Data entered into FieldPar are verified by the sampler before loading into the main SEEPro database.

Spatial information for air and water data features is located in the LM Geographic Information System (GIS) database. Some of the data features included are monitoring locations, potentiometric surfaces, plume configurations, streams/creeks, lakes/ponds, topographic contours, and historic RFS facilities. This system uses an ESRI® ArcGISTM suite of software to store and present data. Automated monitoring locations and other sample location data features are derived from location information stored in the SEEPro database.

1.3.2 Ecology Data

Ecological data have been collected at the Site for many years. Since the early 1990s ecological data have been kept in electronic files for easier access, retrieval, and analysis. In the mid-1990s, the Sitewide Ecological Database (SED) was established as a master dataset for the various types of ecological data collected at the Site. The SED is a Microsoft Access® database that contains all quality-assured ecological data for RFETS from early 1993 through the end of 2001. Data that did not meet the QA objectives are not included in the database. Ecology data in the SED include vegetation monitoring, weed control and controlled burn vegetation monitoring, wildlife surveys (including birds, small mammals, frogs, insects, and fish), Preble's meadow jumping mouse (PMJM) habitat characterization and telemetry tracking, a small amount of soil characterization survey data (for revegetation issues), and a few other types of ecological data. The SED does not contain data on potential contaminants nor is it linked to any GIS or other spatial tool. The data in the SED are primarily observational or catch-and-release; they are considered raw data taken directly off of field logbooks and datasheets. The SED is not intended as a reference for the layperson. It is a repository of quality-assured raw field data collected by Site ecologists and cannot be taken out of context of the methods used to collect the data. Data collection methods are not stored in the database, they are described in reports and field sampling plans.

From 2002 to the present, the ecology data have been stored as separate datasets by sample type, event, and year. Depending on the dataset, the data may be in a Microsoft Access[®] database or in a Microsoft Excel[®] spreadsheet format. The nonspatial electronic ecology data are stored on the Robin server at the RFS in Westminster, Colorado, or on backup electronic media.

Spatial ecology data for the RFS are available for several data types and are stored in the GIS on the Gull server in Grand Junction, Colorado. The types of ecological spatial data that are available include annual weed distribution data (for select species), annual weed control locations, biocontrol release locations, vegetation and wildlife monitoring locations (transect end points and sample points), vegetation community classifications, PMJM habitat, wetland locations, wildfire/prescribed burn locations, PMJM and wetland mitigation work, and rare plant locations. These data are available in various ArcGIS® compatible formats. In addition to these

types of spatial data, orthorectified aerial and satellite imagery is also available for the Site for
different timeframes, including pre- and post-Closure.

2.0 Site Operations and Maintenance

2.1 Pond Operations

During the first quarter of CY 2007, the Site performed five pond water transfers/discharges (Table 2–1). Water quality data for the Ponds A-4 and B-5 discharges are discussed in Sections 3.1.2 and 3.1.12. The locations of the ponds and drainage features are presented on Figure 3–1. As of March 31, 2007, Ponds A-3, A-4, B-5, and C-2, and the Landfill Pond were holding approximately 21.9 million gallons (MG) (22.1 percent of total capacity [99 MG]).

Discharge / Transfer	Dates	Volume (MG)
Pond A-3 to A-4	1/10 – 1/24/07	5.68
Pond A-3 to A-4	2/7 – 2/12/07	4.95
Pond B-5 to South Walnut Creek	3/1 – 3/13/07	7.47
Pond A-4 to North Walnut Creek	3/1 – 3/13/07	10.25
Pond A-3 to A-4	3/13 – 3/28/07	7.67

Table 2-1. First Quarter of CY 2007 Pond Water Transfers/Discharges

Monthly routine dam inspections, pond level measurements, and piezometer measurements were performed as scheduled during the quarter. Periodic resurvey of existing staff gages was completed.

2.2 Landfills

The RCRA Subtitle C-compliant cover for the Present Landfill (PLF) was completed May 2005. The engineered cover for the Original Landfill (OLF) was completed August 2005. LM personnel initiated the landfill inspections in October 2005. The general approach for the PLF and OLF monitoring and inspections, along with the results of those inspections, are presented below.

2.2.1 Present Landfill

The PLF consists of approximately 22 acres of an engineered RCRA Subtitle C-compliant cover over a former sanitary/construction debris landfill. A diversion channel surrounds the landfill and diverts stormwater runoff away from the landfill to No Name Gulch. The landfill has a passive seep interception and treatment system, installed to treat landfill seep water and ground water intercept system (GWIS) water that discharges into the Landfill Pond. A gas extraction system is also built into the landfill and allows subsurface gas to vent to the atmosphere.

Subsidence and consolidation at the PLF is monitored by visually inspecting the surface of the landfill cover for cracks, depressions, heaving, and sinkholes. The landfill final construction site conditions are used as a baseline for comparisons made during site inspections. In addition to the visual inspection, settlement monuments are used to evaluate the actual settlement at these specific locations compared to the expected settlement calculated in the final design. Nine settlement monuments were installed across the top of the landfill cap, with an additional six monuments located on the east face of the landfill. The monuments are monitored quarterly for

the first year, and annually thereafter. The first survey of these locations was performed during fourth quarter of 2006 and again in March 2007.

Inspections and monitoring tasks follow the format and protocol established in the *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan* (DOE 2006c) (PLF M&M Plan) and include ground water and surface water monitoring, monitoring subsidence/consolidation, slope stability, soil cover, vegetation, stormwater management structures, and erosion in surrounding features so that corrective actions can be taken in a timely manner. Monthly inspections were initiated in June 2006. It is anticipated that after the first year, the inspection frequency may be reduced to quarterly for an additional 4 years. The inspection program will be evaluated during the next CERCLA review scheduled for 2007. The findings and observations of the inspections are presented in RFLMA-required quarterly and annual reports, which are submitted to EPA and CDPHE.

2.2.1.1 Inspection Results

PLF inspections for this quarter were performed on January 18, February 14, and March 27, 2007. An evaluation of the landfill cover vegetation was performed January 30, February 7, and March 14. No significant problems were observed during these inspections. Refer to the completed inspection forms accompanying this document for additional information.

2.2.1.2 Slumps

A new slump was discovered February 13, 2007, on the south-facing hillside just east of the PLF, and inspected by a geotechnical engineer on the same day. The slump is not on the landfill but is located directly east of it. The slump was staked out and mapped with a global positioning system (GPS) unit February 14. Technical staff assisted in the documentation (with photographs and field notes), and summarized the winter daily maximum and minimum temperature data from the National Renewable Energy Laboratory (NREL) site (located just north of the Site) to support estimates of the depth of frost in the soil, which may be useful in assessing factors contributing to the slump activity. The field crew will continue to closely monitor this slump, as well as watch for new ones at the PLF.

2.2.1.3 Settlement Monuments

In late July 2006 the settlement monument locations proposed in the PLF Monitoring and Maintenance Plan were field-surveyed to correspond to the exact locations used in the waste settlement calculations. Installation of the settlement monuments at the PLF began August 7, 2006. Progress was slow because the soil was very rocky and highly compacted. The work was stopped while the installation method was revisited. After consultation with DOE-LM, the DOE Office of Environmental Management, the landfill design engineer, and the settlement monument design engineer, an agreement was reached to use a backhoe to perform the first stage of excavation for the remaining eight monuments on the top of the landfill. Once the landfill biobarrier was reached the excavation was completed manually. The six monuments on the east face of the landfill required manual excavation due to the steep slope.

Installation and initial survey of the settlement monuments at the PLF was completed the fourth week of August 2006. All fifteen settlement monument plates at the PLF were surveyed for the second time in March 2007. This is the second quarterly survey of these monuments. Results of

these surveys indicate settling at each monument is within the range of expected settling as published in the PLF M&M Plan (DOE 2006c).

2.2.2 Original Landfill

The OLF consists of approximately 20 acres of an engineered cover over a former solid sanitary and construction debris landfill. The final cover consists of a 2-foot-thick Rocky Flats Alluvium soil cover that was constructed over both a regraded surface and a buttress fill. The original surface was regraded to provide a consistent slope. A 20-foot-high, 1,000-foot-long soil mass buttress fill was placed at the toe of the landfill. Erosion is controlled by a series of diversion berms that carry storm runoff away from the cover in lined channels. In addition, the soil cover was covered with both straw mulch and a spray-on erosion control medium called "Flexterra." A perimeter channel collects runoff from the diversion berms and carries it away from the landfill.

Formal inspections of the OLF are conducted monthly. These inspections were initiated in June 2006 consistent with the requirements contained in the *Original Landfill Monitoring and Maintenance Plan* (DOE 2006b) (OLF M&M Plan). It is anticipated that after the first year, the inspection frequency may be reduced to quarterly for an additional 4 years. The inspection program will be evaluated during the next CERCLA review scheduled for 2007. The findings and observations of the inspections are presented in RFLMA-required quarterly and annual reports, which are submitted to EPA and CDPHE. Inspections and monitoring tasks follow the format and protocol established in the OLF M&M Plan and include ground water and surface water monitoring, monitoring subsidence/consolidation, slope stability, soil cover, vegetation, stormwater management structures, and erosion in surrounding features so that corrective actions can be taken in a timely manner.

2.2.2.1 Inspection Results

OLF inspections during this quarter were performed January 18, February 7, and March 26. An evaluation of the landfill cover vegetation was performed on February 7. Vegetation inspections are only required on a quarterly basis for this time of year.

A slump that extended through Berm #1 was noted on February 7, 2007. The actions and repairs for this slump are discussed in Section 2.2.2.3 along with other slumps that have been documented. Other seeps that have been noted in the OLF inspections and that are being monitored are discussed in Section 2.2.2.2. Refer to the inspection forms accompanying this document for additional information.

The RFLMA Parties initiated consultation regarding the seeps and slumps as discussed below.

2.2.2.2 Seeps

In March 2007 a shallow trench was dug approximately half the length of Berm #3 into the outfall of the western perimeter ditch to drain areas of standing water as a result of flow from Seep #4. Photographs of the activities were taken and are included in the inspection reports.

Seeps #4 and #7 at the OLF were evaluated during the monthly inspections as well as during unscheduled visits. Both seeps still show areas of active ground water seepage that is being drained by Berm #3.

2.2.2.3 Slumps

On February 7, 2007, a slump below Berm #1 was documented following the accelerated melting of several heavy snowfalls and the associated 6- to 8-foot snow drifts. The slump cracks extended from the western perimeter ditch up through Berm #1 and out to the east below Berm #1. The total length of this feature was approximately 200 feet. The slump was immediately staked, photographed, and surveyed with a GPS unit. The cracks that extended through Berm #1 were covered with plastic sheeting and secured with sand bags to help prevent water from infiltrating the cracks and causing more movement of the berm.

On March 14, 2007, the cracks in the berm were filled and the grade of the berm was raised back to a 2-foot freeboard height, as required by the OLF M&M Plan (DOE 2006b). The project involved the addition and compaction of approximately 120 tons of Rocky Flats Alluvium. The berm was then covered with erosion control matting and reseeded. Photographs of the project were taken and included in the monthly landfill inspection report. The slump will continue to be closely monitored for additional movement.

A large depression area below Berm #4 on the east side of the landfill was also noted on February 7, 2007. The western perimeter of the depression extends through a small area of Berm #5 but is not affecting the integrity of the berm. The depression has been staked, photographed, and surveyed with a GPS unit to help evaluate any additional movement. The depression will continue to be monitored during both scheduled inspections and unscheduled visits to the area.

A minor slump was observed in early 2006 (DOE 2007a) on the edge of the west perimeter ditch of the OLF between Berms #2 and #3. At that time, the area of slumping soil was delineated with pin flags, and the extent defined with the field GPS to provide a snapshot of the aerial extent of the slump. Photographs were also taken to help evaluate subtle changes over time. The slump has since extended to the south, and appears to still be active. However, it is not currently a threat to the integrity of the OLF cap or the perimeter ditch. The slump will continue to be monitored during both scheduled inspections and unscheduled visits to the area.

2.2.2.4 Settlement Monuments

The installation of five of the OLF settlement monuments began on March 8 and was completed on March 13, 2007. The remaining three monuments were not installed at that time because two proposed locations were in areas of standing water or saturated soil, and the third was in the approximate center of the Berm #1 slump. Installation of the remaining monuments will be completed when conditions permit.

2.3 Ground Water Plume Treatment Systems

Maintenance and operation of ground water treatment systems at the Site by LM personnel began in late October 2005. The system-specific summaries below focus on tasks performed by LM.

2.3.1 Mound Site Plume Treatment System

Routine maintenance activities continued at the Mound Site Plume Treatment System (MSPTS) through the first quarter of CY 2007. These activities included weekly raking of the media and inspection of influent and effluent flow conditions.

2.3.2 East Trenches Plume Treatment System

Routine maintenance activities continued at the East Trenches Plume Treatment System (ETPTS) through the first quarter of CY 2007. This included weekly raking of the media and inspection of influent and effluent flow conditions.

2.3.3 Solar Ponds Plume Treatment System

Routine maintenance activities continued at the Solar Ponds Plume Treatment System (SPPTS) through the first quarter of CY 2007. This included weekly inspection of the solar/battery system that powers the pump, operation of the pump, and influent and effluent flow conditions.

2.4 Erosion Control and Revegetation

The existing erosion controls are maintained and repaired to protect the bare soil areas until the vegetation can stabilize the soil. Assessing the erosion control is especially important following high wind events which are common at the Site. Areas lacking sufficient vegetative cover were reseeded to ensure adequate establishment of the native vegetation in these areas. Additional erosion control information, specifically related to ecological matters, is covered in Sections 3 2 3 and 3 2 4

Maintenance of the Site erosion control required continued effort throughout the first quarter of CY 2007, especially following high wind or high precipitation events. Replacement of the stakes and/or wire spikes originally used to secure the erosion control matting was required in many areas. In areas of very rocky soil, a common characteristic of the Rocky Flats Alluvium, staking was ineffective and large rocks and cobbles were used to secure the matting.

Erosion wattles were also loosened and displaced by the wind and rain, and required restaking. In areas where the soil allowed, the original stakes were replaced with longer stakes to allow deeper penetration of the stake in the soil to better hold the wattle.

2.4.1 Rocky Flats Annual Inspection

The RFLMA-required Annual Inspection of the COU was performed March 19. The inspection team included 12 personnel from the Rocky Flats office. The inspection focused on the areas other than the OLF, PLF, and treatment systems, which are routinely inspected as described in the quarterly report. The team was briefed prior to the inspection regarding the specific items of inspection, including indication of adverse biological effects, any violation of the remedyrequired institutional controls, evidence of erosion, evidence of differential settlement or subsidence, and/or the presence of large pieces of demolition debris that might indicate erosion. There were no major findings or concerns. Observations and disposition of the observed items were entered into the Site Log.

2.5 General Site Maintenance and Operations

The COU property is being managed and maintained to protect the completed remedial activities and to facilitate completing RFLMA-required monitoring and maintenance activities. Assessment of the conditions is performed on both a scheduled and continuous basis.

2.5.1 RFS Road Upgrades

Dirt roads in the area of the former Industrial Area were in poor repair immediately following Site closure, and a road improvement project began in late summer of 2006. A second phase of road improvements was completed in early October 2006.

After a significant snowmelt in late January and early February of 2007, the Site experienced minor erosion problems on several road areas. It was necessary to coordinate and complete a temporary fix for these road areas to provide uninterrupted travel to all of the necessary locations of the Site. This "Road Band-Aid Project" was developed to upgrade short segments of Site roads to allow access throughout the potentially wet spring months. The subcontractor started road scarification, leveling, and compaction activities March 21, 2007, and began importing road base to several road sections and continued leveling and compaction activities the week of March 26, 2007.

2.5.2 Site Security

2.5.2.1 Fence Maintenance and Construction

The security of the Rocky Flats property is assessed on a continuous basis. The perimeter fence is maintained and replaced as required. Posts are installed and wire replaced and/or repaired as necessary to maintain an intact fence. Excess or unnecessary gates in the perimeter fence are being removed and replaced with fence to reduce the number of access points to Rocky Flats.

Construction of the fence surrounding the COU began on November 6, 2006. The construction was suspended on December 20, 2006, due to heavy snow accumulation. Ground conditions were assessed frequently in the following days and weeks. On January 17, 2007, Site technical and field operations staff met with the fence construction foreman to consider restarting the fence construction. After touring the Site, it was concluded that the fence construction could not be restarted at that time because of snow drifts.

Construction of the fence resumed on February 22 and was completed on March 22, 2007. The "No Trespassing" signs required by RFLMA were attached to this fence, and sign installation was completed March 23. Signs that are required by RFLMA at the entrances to the COU, listing the use restrictions for this OU, were also posted.

2.5.2.2 Security Issues

Off-hours surveillance of the Rocky Flats property was initiated April 19, 2006. The surveillance is performed during times when LM personnel, such as oversight and monitoring and maintenance staff and the field sampling crews, are not normally in the field. These times include evenings during the week, and continuous coverage Thursday evening through Monday morning.

During the first quarter of 2007 the subcontract surveillance personnel made numerous contacts with drivers of vehicles stopped near the Site, and were visible by passing motorists while stationed at their observation stations. Due to poor Site road conditions, in February the Site surveillance was limited to outer perimeter roads (public highways and streets) for safety reasons and to help protect the integrity of Site roads during periods of increased snowmelt. Normal surveillance routes resumed in late March 2007 after the completion of the Road Band-Aid Project described above.

End of current text

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page 2–8

3.0 Environmental Monitoring

3.1 Water Monitoring

This section presents data collected to satisfy water monitoring objectives implemented at the Site in accordance with RFLMA. The RFSOG provides a guidance framework in support of conducting LM activities at the Site including monitoring. Figure 3–1 shows a map with the water monitoring locations operating in the first quarter of CY 2007.

This Quarterly Report presents data collected during the first quarter of CY 2007 (January through March 2007). This section includes:

- An evaluation of analytical results as required for the Point of Compliance (POC), Point of Evaluation (POE), PLF, and OLF monitoring objectives;
- A brief discussion of Investigative and Pre-Discharge monitoring;
- A summary of RCRA ground water monitoring at the PLF and OLF;
- A summary of ground water monitoring in support of the OU 1 Plume; and
- Analytical water-quality data available in the following format:
 - Compact disk (CD) for hard-copy distribution.

3.1.1 Water Monitoring Highlights

During the first quarter of CY 2007, the water monitoring network successfully fulfilled the targeted monitoring objectives as required by RFLMA and using the RFSOG implementation guidance. The network consisted of 13 automated gaging stations, 11 surface water grab sampling locations, 10 treatment system locations, 117 wells, and 8 precipitation gages. During the quarter, 53 flow-paced composite samples, 15 surface water grab samples, 12 treatment system grab samples, and 13 ground water samples were collected.¹

All water-quality data at the RFCA POCs remain well below the applicable standards through the first quarter of CY 2007.

Reportable 12-month rolling average total uranium (U) concentrations continue to be observed in surface water at RFCA POE monitoring station GS10, which is located in South Walnut Creek upstream of Pond B-1 in the Walnut Creek Basin.

DOE provided the initial formal notification of reportable U concentrations at POE GS10 to EPA and CDPHE on July 13, 2006. DOE first became aware of the reportable values when all U sample results were validated on July 6, 2006. This notification reported, on a 12-month rolling average basis per the IMP, a single reportable value for the last day of April 2006 (April 30, 2006; 10.19 picocuries per liter [pCi/L]). The RFCA action level for total U in Walnut Creek is 10 pCi/L.

.

¹ Composite samples consist of multiple aliquots ('grabs') of identical volume. Each grab is delivered by the automatic sampler to the composite container at each predetermined flow-volume or time interval.

A more comprehensive water-quality evaluation was detailed in Section 2.2.1.1, "Notification and Source Evaluation for Reportable 12-Month Rolling Total Uranium Values at RFCA Point of Evaluation GS10" of the *Quarterly Report of Site Surveillance and Maintenance Activities:* Second Quarter Calendar Year 2006 (DOE 2006j). The Site continues to evaluate, in coordination with the regulators, the measured U concentrations at GS10. Recent GS10 data are evaluated in Section 3.1.3.1 of this report.

All other POE analyte concentrations remained below reporting levels as of the end of the first quarter of CY 2007. Erosion and runoff controls, as well as extensive revegetation efforts, have proven to be effective in measurably reducing both sediment transport and constituent concentrations. As of the end of the first quarter of CY 2007, all of the POEs were showing plutonium-239,240 (Pu) and americium-241 (Am) concentrations well below the RFLMA standards. With the removal of impervious areas resulting in decreased runoff, the stabilization of soils within the drainages, and the progression of revegetation, acceptable water quality is expected to continue.

All surface water monitoring data for the OLF were below standards during the quarter. All monitoring data for the PLF Treatment System (PLFTS) were below standards during the quarter.

Ground water monitoring results at the PLF and OLF will be evaluated as part of the Annual Report for 2007. Ground water at the OU 1 Plume wells was monitored in accordance with the 2006 IMP (DOE 2006g, 2006h), because RFLMA was not signed until late in the quarter. Results of this monitoring are consistent with previous data.

3.1.2 POC Monitoring

This objective deals with monitoring discharges from the terminal ponds into Woman and Walnut Creeks and streamflow at the additional POCs downstream at Indiana Street to demonstrate compliance with RFLMA surface water quality standards (see Table 1 of Attachment 2 to RFLMA). Terminal pond discharges are monitored by POCs GS11, GS08, and GS31. Walnut Creek is monitored at Indiana Street by POC GS03. Woman Creek is monitored at Indiana Street by POC GS01. These locations are shown on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–1.

The following sections include summary tables and plots showing the applicable 30-day and 12-month rolling averages for the POC analytes. The following evaluations include all results that were not rejected through the verification and validation process. Data are generally presented to decimal places as reported by the laboratories. Accuracy should not be inferred; minimum detectable concentrations/activities and analytical error are often greater than the precision presented. When a sample has a corresponding field duplicate, the value used in calculations is the arithmetic average of the 'real' and the 'duplicate' values. When a sample has multiple 'real' analyses (Site requested 'reruns'), the value used in calculations is the arithmetic average of the multiple 'real' analyses.²

or relative percent difference (RPD) depending on the analyte, is required to assess the representative sample and its usability for compliance decisions (see Section 8.2.3 of the RFSOG for discussion).

² Significant differences in values for a data pair are an indication of potential problems with sample preparation and/or analysis. Under these circumstances, an applicable value to be used for comparison cannot be determined with sufficient confidence to make compliance decisions. As such, an evaluation of the duplicate error ratio (DER) or relative percent difference (RPD) depending on the analyte, is required to assess the representativeness of the

Figure 3-1. RFS Water Monitoring Locations and Precipitation Gages: First Quarter of CY 2007

This page intentionally left blank

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page 3-4

Refer to the analytical data accompanying this document for further information.

Table 3-1. Sampling and Data Evaluation Protocols at POCs

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
GS01	Woman Creek at Indiana Street	Continuous flow-paced composites; frequency varies (target is 20-40 per year) ^a	total Pu, Am, and U isotopes ^b [TSS ^d]	see Figure 5 in Appendix D
GS03	Walnut Creek at Indiana Street	Continuous flow-paced composites; frequency varies (target is 25-30 per year) ^a	total Pu, Am, U isotopes ^b , and nitrate ^c [TSS ^d]	see Figure 5 in Appendix D
GS08	Pond B-5 Outlet	Continuous flow-paced composites; frequency varies (target is 0-19 per year)	total Pu, Am, U isotopes ^b , and nitrate ^c	see Figure 5 in Appendix D
GS11	Pond A-4 Outlet	Continuous flow-paced composites; frequency varies (target is 0-15 per year)	total Pu, Am, U isotopes ^b , and nitrate ^c	see Figure 5 in Appendix D
GS31	Pond C-2 Outlet	Continuous flow-paced composites; frequency varies (target is 0-5 per year)	total Pu, Am, and U isotopes ^b	see Figure 5 in Appendix D

Notes:

3.1.2.1 Location GS01

Monitoring location GS01 is located on Woman Creek at Indiana Street (Figure 3–1). The Woman Creek headwaters, the southern portion of the COU, and Pond C-2 contribute flow to GS01.

Table 3–2 shows that all of the annual average Pu and Am activities were well below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2006) are well below 0.15 pCi/L. The average total U activities are all well below 11 pCi/L.

Figure 3–2 and Figure 3–3 show no occurrences of reportable 30-day averages for the quarter.

^aFrequency depends on available flow; samples are segregated by water origin (baseflow or pond discharge).

^bU isotopes are U-233,234 + U-235 + U-238.

^cCollected during pond discharges only; nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

^dTotal suspended solids (TSS) is analyzed when the composite sampling period is within TSS hold-time limits.

Table 3-2. Annual Volume-Weighted Average Radionuclide Activities at GS01 for 1997-2007

Calendar Year	Volume-Weighted Average Activity (pCi/L)			
Calelidai Teal	Am-241	Pu-239,240	Total U	
1997	0.003	0.007	NA	
1998	0.006	0.006	NA	
1999	0.005	0.008	NA	
2000	0.004	0.003	NA	
2001	0.004	0.006	NA	
2002	0.002	0.001	NA	
2003	0.002	0.004	1.24	
2004	0.003	0.002	3.56	
2005	0.004	0.003	2.50	
2006	0.012	0.003	4.76	
2007	0.007	0.005	1.99	
Total (1997-2007)	0.004	0.005	2.12	

Notes: Collection of total U data began on February 3, 2003. Data through April 3, 2007. NA = not applicable.

Figure 3–2. Volume-Weighted 30-Day Average Pu and Am Activities at GS01: Calendar Year Ending First Quarter of CY 2007

Note: Data through April 3, 2007.

Figure 3–3. Volume-Weighted 30-Day Average Total U Activities at GS01: Calendar Year Ending First Quarter of CY 2007

3.1.2.2 Location GS03

Monitoring location GS03 is located on Walnut Creek at Indiana Street (Figure 3–1). The Walnut Creek headwaters, the majority of the COU, Pond A-4, and Pond B-5 contribute flow to GS03.

Table 3–3 shows that all of the annual average Pu and Am activities were well below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2007) are well below 0.15 pCi/L. The average total U and nitrate+nitrite concentrations are all well below 10 pCi/L and 10 milligrams per liter (mg/L), respectively.

Figure 3–4 and Figure 3–5 show no occurrences of reportable radionuclide 30-day averages for the quarter. For nitrate+nitrite, no 30-day averages are calculated since only 13 days of discharge have occurred to date.

Table 3–3. Annual Volume-Weighted Average Radionuclide Activities and Nitrate+Nitrite as N Concentrations at GS03 for 1997–2007

Calendar Year	Volume-Weighted Average Activity (pCi/L)			Volume-Weighted Average Concentration (mg/L) ^a
	Am-241	Pu-239,240	Total U	Nitrate+Nitrite as N
1997	0.014	0.026	NA	NA
1998	0.010	0.014	NA	NA
1999	0.009	0.015	NA	NA
2000	0.007	0.005	NA	NA
2001	0.005	0.009	NA	NA
2002	0.006	0.012	NA	NA
2003	0.005	0.006	1.79	NA
2004	0.008	0.008	1.76	NA
2005	0.022	0.008	3.95	NA (no pond discharges after 10/13/05)
2006	NA (no flow)	NA (no flow)	NA (no flow)	NA (no pond discharges)
2007	0.001	0.009	4.14	3.75
Total (1997-2007)	0.009	0.012	2.40	3.75

Notes: Collection of total U data began on November 5, 2002. Data through April 24, 2007. NA = not applicable.

^aFor pond discharge periods only; nitrate+nitrite as N sampling began on October 13, 2005.

Figure 3–4. Volume-Weighted 30-Day Average Pu and Am Activities at GS03: Calendar Year Ending First Quarter of CY 2007

Note: Data through April 24, 2007.

Figure 3–5. Volume-Weighted 30-Day Average Total U Activities at GS03: Calendar Year Ending First Quarter of CY 2007

3.1.2.3 Location GS08

Monitoring location GS08 is located on South Walnut Creek at the outlet of Pond B-5 (Figure 3–1). The central portion of the COU contributes flow to Pond B-5.

Table 3–4 shows that all of the annual average Pu and Am activities were well below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2007) are well below 0.15 pCi/L. The average total U activities have shown recent increases due to contributions from GS10 (see Section 3.1.3.1). Nitrate+nitrite concentrations are well below 10 mg/L.

Figure 3–6, Figure 3–7, and Figure 3–8 show no occurrences of reportable 12-month rolling averages for the quarter.

Table 3–4. Annual Volume-Weighted Average Radionuclide Activities and Nitrate+Nitrite as N Concentrations at GS08 for 1997–2007

Calendar Year	Volume-Weighted Average Activity (pCi/L)			Volume-Weighted Average Concentration (mg/L) ^a
	Am-241	Pu-239,240	Total U	Nitrate+Nitrite as N
1997	0.008	0.006	1.69	NA
1998	0.006	0.008	2.33	NA
1999	0.015	0.046	1.38	NA
2000	0.029	0.047	0.93	NA
2001	0.004	0.006	1.24	NA
2002	0.003	0.002	0.68	NA
2003	0.006	0.026	1.37	NA
2004	0.009	0.009	1.24	NA
2005	0.021	0.008	6.11	NA (no pond discharge after 10/13/05)
2006	NA (no discharge)	NA (no discharge)	NA (no discharge)	NA (no discharge)
2007	0.003	0.005	10.1 ^b	0.46
Total (1997-2007)	0.012	0.022	1.70	0.46

Notes:

Data through March 31, 2007.

NA = not applicable.

^aNitrate+nitrite as N sampling began on October 13, 2005.

^bThe CY 2007 volume-weighted total U activity is calculated using the actual start and end times for each composite sample. Compliance is demonstrated using 12-month rolling averages and daily time steps (each day is assigned the activity of the composite sample in progress at the end of each day). Using this agreed-upon method, the 12-month rolling average on March 31, 2007 was not above the 10 pCi/L standard (see Figure 3−7).

Figure 3–6. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS08: Calendar Year Ending First Quarter of CY 2007

Figure 3–7. Volume-Weighted 12-Month Rolling Average Total U Activities at GS08: Calendar Year Ending First Quarter of CY 2007

Figure 3–8. Volume-Weighted 12-Month Rolling Average Nitrate+Nitrite as N Concentrations at GS08: Calendar Year Ending First Quarter of CY 2007

3.1.2.4 Location GS11

Monitoring location GS11 is located on North Walnut Creek at the outlet of Pond A-4 (Figure 3–1). The northern portion of the COU contributes flow to Pond A-4.

Table 3–5 shows that all of the annual average Pu and Am activities were well below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2007) are well below 0.15 pCi/L. The average total U and nitrate+nitrite concentrations are all well below 10 pCi/L and 10 mg/L, respectively.

Figure 3–9, Figure 3–10, and Figure 3–11 show no occurrences of reportable 12-month rolling averages for the quarter.

Table 3–5. Annual Volume-Weighted Average Radionuclide Activities and Nitrate+Nitrite as N Concentrations at GS11 for 1997–2007

Calendar Year	Volume-W	Volume-Weighted Average Concentration (mg/L) ^a		
	Am-241	Pu-239,240	Total U	Nitrate+Nitrite as N
1997	0.005	0.008	1.82	NA
1998	0.011	0.004	2.18	NA
1999	0.003	0.007	1.76	NA
2000	0.001	0.018	2.45	NA
2001	0.003	0.002	2.89	NA
2002	0.003	0.000	2.29	NA
2003	0.003	0.002	2.91	NA
2004	0.006	0.002	2.71	NA
2005	0.022	0.002	1.78	NA (no pond discharge after 10/13/05)
2006	NA (no discharge)	NA (no discharge)	NA (no discharge)	NA (no discharge)
2007	0.002	0.007	4.01	5.96
Total (1997-2007)	0.006	0.006	2.23	5.96

Notes: Data through March 31, 2007.

NA = not applicable.

^aNitrate+nitrite as N sampling began on October 13, 2005.

Figure 3–9. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS11: Calendar Year Ending First Quarter of CY 2007

Figure 3–10. Volume-Weighted 12-Month Rolling Average Total U Activities at GS11: Calendar Year Ending First Quarter of CY 2007

Note: Nitrate+nitrite as N 12-month averages are conservatively compared to the nitrate standard only.

Figure 3–11. Volume-Weighted 12-Month Rolling Average Nitrate+Nitrite as N Concentrations at GS11: Calendar Year Ending First Quarter of CY 2007

3.1.2.5 Location GS31

Monitoring location GS31 is located on Woman Creek at the outlet of Pond C-2 (Figure 3–1). The southern portion of the COU contributes flow to Pond C-2.

Pond C-2 has not been discharged during CY 2007. The last discharge occurred during July 1–July 14, 2005. Therefore, no 12-month rolling averages are calculated after June 30, 2006.

Table 3–6 shows that all of the annual average Pu and Am activities were below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2007) are below 0.15 pCi/L. The average U activities are all well below 11 pCi/L.

Figure 3–12 and Figure 3–13 show no occurrences of reportable 12-month rolling averages for the quarter.

Table 3-6. Annual Volume-Weighted Average Radionuclide Activities at GS31 for 1997-2007

Calendar Year	Volume-W	eighted Average Activ	rity (pCi/L)
Calelidal Teal	Am-241	Pu-239,240	Total U
1997	0.008	0.017	2.10
1998	0.018	0.003	2.53
1999	0.010	0.043	2.70
2000	No C-2 Discharge	No C-2 Discharge	No C-2 Discharge
2001	0.013	0.021	1.25
2002	0.015	0.089	2.43
2003	0.006	0.015	1.62
2004	0.010	0.021	1.65
2005	0.008	0.020	4.07
2006	No C-2 Discharge	No C-2 Discharge	No C-2 Discharge
2007	No C-2 Discharge to Date	No C-2 Discharge to Date	No C-2 Discharge to Date
Total (1997-2007)	0.011	0.019	2.13

Notes: There has been no Pond C-2 discharge during 2007 through March 31, 2007. NA = not applicable.

Figure 3–12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS31: Calendar Year Ending First Quarter of CY 2007

Figure 3–13. Volume-Weighted 12-Month Rolling Average Total U Activities at GS31: Calendar Year Ending First Quarter of CY 2007

3.1.3 POE Monitoring

This objective deals with monitoring runoff and baseflow from the interior of the COU to the A-, B-, and C-Series Ponds to demonstrate compliance with surface water quality standards (see Table 1 of Attachment 2 to RFLMA). Surface water is monitored by POEs SW093, GS10, and SW027 on North Walnut Creek, South Walnut Creek, and the South Interceptor Ditch (SID), respectively. These locations are shown on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–7.

Table 3-7. Sampling and Data Evaluation Protocols at POEs

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
GS10	South Walnut Creek at Outfall of FC-4	Continuous flow-paced composites; frequency varies (target is 20 per year) ^a	total hardness, Be, Cr, Pu, Am, and U isotopes ^b ; dissolved Ag and Cd; [TSS ^c]	see Figure 6 in Appendix D
SW027	SID at Pond C-2	Continuous flow-paced composites; frequency varies (target is 20 per year) ^a	total hardness, Be, Cr, Pu, Am, and U isotopes ^b ; dissolved Ag and Cd; [TSS ^c]	see Figure 6 in Appendix D
SW093	North Walnut Creek at Outfall of FC-3	Continuous flow-paced composites; frequency varies (target is 20 per year) ^a	total hardness, Be, Cr, Pu, Am, and U isotopes ^b ; dissolved Ag and Cd; [TSS ^c]	see Figure 6 in Appendix D

Notes:

^aFrequency depends on available flow.

^bU isotopes are U-233,234 + U-235 + U-238.

^cTotal suspended solids (TSS) is analyzed when the composite sampling period is within TSS hold-time limits.

The following sections include summary tables and plots showing the applicable 30-day and 12-month rolling averages for the POE analytes. The following evaluations include all results that were not rejected through the verification and validation process. Data are generally presented to decimal places as reported by the laboratories. Accuracy should not be inferred; minimum detectable concentrations/activities and analytical error are often greater than the precision presented. When a sample has a corresponding field duplicate, the value used in calculations is the arithmetic average of the 'real' and the 'duplicate' values. When a sample has multiple 'real' analyses (Site requested 'reruns'), the value used in calculations is the arithmetic average of the multiple 'real' analyses.³

Refer to the analytical data accompanying this document for further information.

3.1.3.1 Location GS10

Monitoring location GS10 is located on South Walnut Creek just upstream of the B-Series Ponds (Figure 3–1). The central portion of the COU contributes flow to GS10 through Functional Channel (FC)-4 and FC-5.

Table 3–8 shows that many of the annual average Pu and Am activities at GS10 were greater than 0.15 pCi/L during active Site closure. However, a significant reduction in both Pu and Am activities has been observed following Site closure. With the completion of the FCs. implementation of enhanced erosion controls, revegetation, soil stabilization, and lack of substantial runoff, transport of Pu and Am has been virtually eliminated. Figure 3–14 shows no reportable Pu or Am values during the quarter.

Table 3-8. Annual Volume-Weighted Average Radionuclide Activities at GS10 for 1997-2007

Calendar Year	Volume-V	Volume-Weighted Average Activity (pCi/L)				
Caleffual Teal	Am-241	Pu-239,240	Total U			
1997	0.266	0.260	2.78			
1998	0.109	0.158	3.06			
1999	0.274	0.139	2.49			
2000	0.421	0.195	2.23			
2001	0.075	0.080	2.91			
2002	0.087	0.061	2.88			
2003	0.117	0.113	2.68			
2004	0.136	0.314	2.48			
2005	0.185	0.238	8.27			
2006	0.010	0.014	13.43			
2007	0.016	0.030	13.46			
Total (1997-2007)	0.188	0.172	3.36			

Data through April 16, 2007. Notes:

³ Significant differences in values for a data pair are an indication of potential problems with sample preparation and/or analysis. Under these circumstances, an applicable value to be used for comparison cannot be determined with sufficient confidence to make compliance decisions. As such, an evaluation of the DER or RPD depending on the analyte, is required to assess the representativeness of the sample and its usability for compliance decisions (see Section 8.2.3 of the RFSOG for discussion).

Figure 3–15 shows reportable 12-month rolling averages for total U during the quarter. Details regarding notification and source evaluation are detailed in Section 2.2.1.1, "Notification and Source Evaluation for Reportable 12-Month Rolling Total Uranium Values at RFCA Point of Evaluation GS10" of the *Quarterly Report of Site Surveillance and Maintenance Activities:* Second Quarter Calendar Year 2006 (DOE 2006j). The Site continues to evaluate, in coordination with the regulators, the measured U concentrations at GS10. Recent data are summarized below in a source evaluation update.

Table 3–9 shows that all of the annual average metals concentrations were less than the standard/practical quantitation limit (PQL). Additionally, the long-term metals averages (1997–2007) were all less than the standard/PQL. Figure 3–16 shows that none of the 85th percentile 30-day average metals concentrations were reportable for the quarter.

Figure 3–14. Volume-Weighted Average Pu and Am Compliance Values at GS10: Calendar Year Ending First Quarter of CY 2007

Figure 3–15. Volume-Weighted Average Total U Compliance Values at GS10: Calendar Year Ending First Quarter of CY 2007

Table 3–9. Annual Volume-Weighted Average Hardness and Metals Concentrations at GS10 for 1997–2007

Calendar Year	Volume-Weighted Average Concentration (μg/L)					
Caleffual Teal	Hardness (mg/L)	Total Be	Dissolved Cd	Total Cr	Dissolved Ag	
1997	138	0.50	0.09	4.05	0.11	
1998	162	0.15	0.13	3.32	0.20	
1999	139	0.16	0.07	4.08	0.15	
2000	181	0.21	0.11	3.65	0.11	
2001	222	0.32	0.11	5.95	0.11	
2002	277	0.24	0.09	5.38	0.10	
2003	228	0.22	0.10	6.91	0.12	
2004	227	0.60	0.10	13.1	0.13	
2005	401	0.88	0.06	17.5	0.15	
2006	604	0.50	0.05	0.74	0.10	
2007	373	0.50	0.08	1.50	0.11	
Total (1997-2007)	210	0.34	0.10	6.29	0.13	

Notes: Hardness units in mg/L. Data through April 16, 2007.

Figure 3–16. Volume-Weighted Average Metals Compliance Values at GS10: Calendar Year Ending First Quarter of CY 2007

Summary of Recent Reportable 12-Month Rolling Total U Values at POE GS10

This section provides follow-up information regarding the Site's July 13, 2006, notification of observed reportable concentrations of U in surface water at RFCA POE surface water monitoring location GS10, which is located in South Walnut Creek upstream of Pond B-1 in the Walnut Creek basin (Figure 3–1). Reportable U levels continue to be observed at GS10. The Site continues to evaluate, in coordination with the regulators, the measured U concentrations at GS10.

DOE first became aware of the reportable 12-month rolling averages when all U sample results were validated on July 6, 2006. To meet the RFCA commitment at the time, DOE transmitted notification to EPA and CDPHE within the 15-day reporting period, which ended July 21, 2006. In addition, RFCA required that DOE, within 30 days of gaining knowledge of the reportable results, submit to EPA and CDPHE a source evaluation plan addressing reportable values. The July 13, 2006, notification letter served as both the comprehensive notice and the plan for that source evaluation, based on consideration for other evaluative work already performed in this drainage.

The characteristics of the current reportable period for U at GS10 are consistent with those for the previous reportable period during the summer of 2005. DOE provided notice for that reportable period on August 16, 2005 (05-DOE-00522).

The calculated 12-month rolling average for total U triggered the reporting requirements under RFCA Attachment 5, Section 2.4 (B) and subsequently Section 6.0 of Attachment 2 to RFLMA, for April 30, 2006, through April 30, 2007 (for details, see Table 3–10). All data used in the calculation of the 12-month rolling average have been validated. The end of the reportable period will be determined by subsequent data. Recent analytical results are listed in Table 3–11.

Table 3-10. Reportable 12-Month Rolling Average Values for POE Monitoring Location GS10

Analyte	Dates of Reportable Values	Range of 12-Month Rolling Average Values (pCi/L)
Total U	4/30/06-to be determined	10.19-13.41

Note: The standard for total U in Walnut Creek is 10 pCi/L.

Table 3-11. Recent Analytical Results for Composite Samples Collected at GS10

Composite Sample Start Date	Total U Analytical Result (pCi/L)
7/3/2006	8.47
7/10/2006	10.44
7/27/2006	10.41
8/10/2006	9.82
8/30/2006	5.74
10/2/2006	8.66
10/24/2006	11.71
10/28/2006	14.17
11/27/2006	16.94
1/10/2007	10.84
2/8/2007	13.82
3/2/2007	12.14
3/25/2007	17.31
4/17/2007	14.92
4/24/2007	8.46
4/25/2007	13.18

The following evaluation for South Walnut Creek monitoring station GS10 covers data received through June 13, 2007. Laboratory analyses for three composite samples collected for the periods May 1–10, 2007, May 10–24, 2007, and May 24–31, 2007, have not been completed. The composite sample started on May 31, 2007, is still in progress. The following are included in this assessment:

- Evaluation of ongoing automated surface water monitoring at GS10;
- Estimation of U loads at GS10; and
- Evaluation of water-quality trends and correlations at GS10.

Downstream Water Quality Monitoring

Water flowing through GS10 also passes through the lower B-Series Ponds (Ponds B-4 and B-5) and South Walnut Creek before leaving the Site. POCs GS08 (Pond B-5 outlet) and GS03 (Walnut Creek at Indiana Street) again monitor this water during Pond B-5 discharges.

Pond B-5 was predischarge sampled on February 28, 2007. The total U concentration for that sample was 7.82 pCi/L. Pond B-5 was direct-discharged through the outlet to South Walnut Creek through POC GS08 starting on March 1, 2007, and ending on March 13, 2007. During the discharge period, six composite samples were collected at both POC GS08 and POC GS03. Total U concentrations in the GS08 samples ranged from 11.1 to 9.36 pCi/L. The 12-month rolling average at GS08 for March 31, 2007, was 9.99 pCi/L, just below the standard. Total U results at GS03 during the discharge ranged from 6.38 to 4.38 pCi/L; the highest 30-day average resulting from the discharge was 5.35 pCi/L.⁴

Pond B-5 was again predischarge sampled on May 4, 2007. Total U results for this sample (Site results) were significantly different than the CDPHE results from the split sample. Based on the discrepancy, the decision was made to resample Pond B-5 for total U; samples were collected on June 7, 2007. The decision to discharge Pond B-5 will be based on these results, in consultation with CDPHE.

GS10 Monitoring Results

As specified in RFLMA, the Site demonstrates compliance using 12-month rolling average values for select radionuclides at POE surface water monitoring locations. Results for recent 12-month rolling average values using available data at GS10 are summarized in Table 3–10. Figure 3–17 shows the calculated compliance values and the individual sample results at GS10 for the previous CY period.

All analytical results for the composite samples collected during the period of reportable values have been validated. A review of historical GS10 monitoring data shows that these results are measurably higher than those for previous years (Figure 3–18). The significant reduction in runoff following Site closure can also be clearly seen in Figure 3–18.

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700

⁴ Pond A-4 was concurrently discharged with Pond B-5 in March 2007; samples collected at GS03 included commingled water from both ponds.

Note: Data through April 30, 2007.

Figure 3–17. POE Monitoring Station GS10: Compliance Values and Individual Sample Results for Total U (May 1, 2006–April 30, 2007)

Figure 3–18. POE Monitoring Station GS10: Hydrograph and Individual Sample Results for Total U (January 1, 1997–April 30, 2007)

Data Summary and Analysis

Monitoring data were extracted from the former Soil Water Database (SWD) or the current SEEPro database. The following list describes the environmental data compilation process:

- Individual sample result values are calculated as arithmetic averages of real and field duplicate results when both results are from the same sampling event;⁵
- When available, Site-requested laboratory reruns are averaged with initial runs for the same sampling event;
- Laboratory duplicate and replicate quality control (QC) results are not used;
- When negative values for actinide measurement are returned from the laboratories due to blank correction, 0.0 pCi/L is used in the calculations;
- Only total radionuclide measurements are used; and
- Data that did not pass validation (rejected data) are not used.

Verification and Validation of Surface Water Analytical Results

Prior to Site closure, all surface water isotopic data are either verified or validated, based on criteria determined by the Kaiser-Hill Analytical Services Division, or at the special request of the requestor. Approximately 75 percent of all isotopic data are verified and the remaining 25 percent are validated. Validation is typically determined randomly for each subcontracted laboratory, based on the specific analytical suites. This random validation selection may or may not routinely include POE or POC locations. However, when reportable values are observed, all analytical results used in the calculations receive formal validation.

Under current LM procedures, all data are validated prior to being loaded into the SEEPro database.

High-Resolution Inductively Coupled Plasma/Mass Spectrometry and Thermal Ionization Mass Spectrometry Analyses

Prior to Site closure, ground water and surface water samples from select locations were sent to Los Alamos National Laboratory (LANL) for high-resolution inductively coupled plasma/mass spectrometry (HR ICP/MS) and/or thermal ionization mass spectrometry (TIMS) analyses. These analytical methods measure mass ratios of four U isotopes (masses 234, 235, 236, and 238). Isotopic ratios provide a signature that indicates whether and the extent to which the source of U is natural or anthropogenic (manmade).

In August 2005, South Walnut Creek surface water samples from SW056, SW141, and GS10, and ground water samples from upgradient wells (91305, 99305, 91203, and 99405) were evaluated using HR ICP/MS and TIMS. The results indicate that, although concentrations of U vary widely, all the ground water and surface water locations produce water samples with a predominantly natural U isotopic signature. Location GS10, however, displayed a higher

-

⁵ Radionuclide data pairs are averaged when the DER is less than 1.5; sample pairs with DER ratios in excess of 1.5 are not used due to inferred lack of confidence in either result.

percentage of anthropogenic U than the other locations. Concentrations of U in ground water samples collected in August 2005 from wells located upstream of GS10 vary from less than 5 micrograms per liter ($\mu g/L$) at well 91203 (with a 93.4 percent natural U isotopic signature) to nearly 400 $\mu g/L$ at well 99405 (with an isotopic signature that is 99.9 percent natural U). (A previous sample from the original well at this location, 99401, produced a sample with a concentration of just over 650 $\mu g/L$ U that was 100 percent natural.)

The results of all the HR ICP/MS and TIMS analyses are summarized in a report titled *Quantitative Evaluation of Mixture Components in RFETS Uranium Isotopic Analyses: Development & Verification/Validation of Calculations using an Excel Spreadsheet* by Dr. David R. Janecky, LANL (DOE 2006; included as Attachment 3 to Section 8 of the RI/FS Report published in June 2006). This report provides a summary of the HR ICP/MS and TIMS results and calculations of U isotopic mixtures (mixtures between natural and anthropogenic [enriched and depleted] U). Dr. Janecky's analysis concludes that the U at GS10 is dominated by natural U, with a lesser amount of depleted and minimal enriched U. An earlier sample analyzed by LANL, collected in May 2002, shows a generally similar isotopic signature, although the relative fraction of anthropogenic U is smaller as shown in Table 3–12.

Table 3–12. U Concentrations and Isotopic Signatures from Samples Collected at GS10 as Reported by LANL

Date	U Concentration, μg/L	% Depleted U	% Enriched U	% Natural U
5/1/2002	9.6	22.1	0.04	77.8
8/11/2005	13.2	36.2	0.10	63.7

Source: Data are from RI/FS Section 8, Attachment 3, and have been normalized to 100 percent.

The samples from GS10 summarized in Table 3–12 illustrate the isotopic variability of the mixture of direct runoff and ground water that contributes to surface water flow at this location. Over longer periods, this variability may have a greater influence on the characteristics of the U in surface water, both concentration and signature. The Site is planning additional high-resolution isotopic analyses of GS10 water in the near future.

Total U at GS10: Data Summary

Figure 3–19 shows the volume-weighted average annual activity-concentrations (concentration in surface water expressed as activity per unit volume) for total U at GS10 during CY 1997–2007. A measurable increase in concentration is noted starting in 2005.

Note: Data through April 30, 2007.

Figure 3-19. Average Annual Total U Concentrations at GS10: 1997-2007

Annual total U loads (mass) for GS10 in grams are plotted on Figure 3–20 to show long-term loading at GS10. For 1997–2007, the activity-concentration for each flow-paced composite sample is multiplied by the associated discharge volume to get picocuries (pCi), then converted to grams and totaled annually. Although reportable compliance values were observed during the 2005–2007 period, and concentrations in Figure 3–19 show a measurable increase, the loads for 2005–2007 are within historical ranges, and measurably lower in CY 2006. This further suggests that the recently observed increased U concentrations at GS10 may be a result of changing hydrologic conditions, and not significant increases in the quantity of U reaching the creek.

Figure 3–21 shows that the higher U concentrations are generally associated with lower flow rates, during periods of extended baseflow sustained by ground water contributions. As the area of impervious surfaces in the GS10 drainage was reduced by Site closure (i.e., removal of buildings, asphalt, and concrete), direct runoff to GS10 was also reduced. Similarly, removal of Site infrastructure likely resulted in reduced baseflow contributions from domestic and sanitary water leakage. Therefore, ground water contributions to the creek over the same period comprised an increasing portion of the flows monitored at GS10. Ground water data from monitoring wells located near South Walnut Creek show naturally occurring U in concentrations that are considerably higher than the surface water standard. Without the attenuation of U from ground water sources by direct runoff and infrastructure leakage, increases in surface water U concentrations would be expected.

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700

⁶ These ground water contributions occur as localized or distributed seeps to the streambed.

⁷ Leaks from domestic and sanitary lines are presumed to have lower U concentrations than natural ground water sources.

Figure 3-20. Annual Total U Loads at GS10: 1997-2007

Figure 3-21. Variation of Total U Concentration with Flow Rate at GS10: 1997-2007

Hardness is collected for all composite samples at GS10 to support metals evaluation. Figure 3–22 shows individual sample results for hardness plotted with flow rate. A measurable increase in hardness is noted during the recent period of reduced flow rates and increased U concentrations (see Figure 3–18). Since ground water generally shows higher hardness than surface water runoff, these data further suggest an increase in the proportion of ground water in flows at GS10.

Figure 3–22. POE Monitoring Station GS10: Hydrograph and Individual Sample Results for Hardness (January 1, 1997–April 30, 2007)

Summary and Conclusions

Based on the above evaluation, Site personnel conclude that the recent U activities at GS10 are likely a result of changing hydrologic conditions (particularly the increasing ground water component in surface water flows at GS10, relative to conditions that prevailed prior to Site closure), and that no specific remedial action(s) is indicated at this time. The data do not suggest a previously unknown localized source(s) of contamination that warrants targeted remediation. The current conclusions are summarized below:

- Data collected from all terminal pond and fenceline POCs remain below reporting thresholds for all monitored analytes. However, increased U concentrations are being observed downstream of GS10.
- Recent HR ICP/MS and TIMS analyses for both ground water and surface water samples collected upstream of GS10 all show a predominantly natural U signature. While the two analyses of surface water from GS10 indicate the existence of some depleted U, the normal variability of direct runoff and ground water flow would be expected to strongly influence

_

⁸ The measurably higher hardness concentrations starting in 2001 have been attributed to changes in the deicing products used at Rocky Flats during the winter of 2000–2001.

the U characteristics, both concentration and signature, over longer periods. To fully understand this variability, additional U data as they relate to the appropriate water-quality action level would need to be evaluated. The Site is planning additional high-resolution isotopic analyses of GS10 water in the near future.

- Ground water data within South Walnut Creek show naturally occurring U activities considerably higher than the surface water standard. Baseflow at GS10 is sustained by ground water expressions in the form of both localized seeps and distributed flow to the streambed.
- Surface water data from GS10 show that the higher U concentrations are associated with lower flow rates, during periods of extended baseflow sustained by ground water contributions. As the amount of impervious surface at the Site was reduced, direct runoff to GS10 was also reduced. Similarly, removal of Site infrastructure likely resulted in reduced baseflow contributions from domestic and sanitary water leakage. Therefore, ground water contributions to South Walnut Creek now make up a larger portion of the flows monitored at GS10. Without the attenuation of U ground water sources by direct runoff and infrastructure leakage, increases in surface water U concentrations would be expected.

3.1.3.2 Location SW027

Monitoring location SW027 is located at the end of the SID at the inlet to Pond C-2 (Figure 3–1). The southern portion of the COU contributes flow to SW027 through the SID.

Table 3–13 shows that the majority of the annual average Pu and Am activities were less than 0.15 pCi/L. The significant increase in 2004 was the result of increased solids transport from disturbed areas associated with the 903 Pad/Lip accelerated actions. However, a significant reduction in both Pu and Am activities has been observed following completion of accelerated actions in the drainage. With the completion of the 903 Pad/Lip actions, implementation of enhanced erosion controls, revegetation, soil stabilization, and lack of substantial runoff, transport of Pu and Am approaching the action level has been virtually eliminated. The total U annual average activities are well below 11 pCi/L.

Table 3-13. Annual Volume-Weighted Average Radionuclide Activities at SW027 for 1997-2006

Calendar Year	Volume-V	/eighted Average Activ	vity (pCi/L)
Calelidal Teal	Am-241	Pu-239,240	Total U
1997	0.008	0.036	1.48
1998	0.021	0.156	3.45
1999	0.019	0.066	1.90
2000	0.060	0.348	1.10
2001	0.006	0.025	1.33
2002	0.001	0.003	0.53
2003	0.011	0.080	1.70
2004	0.413	2.273	1.05
2005	0.022	0.156	2.34
2006	NA (no flow)	NA (no flow)	NA (no flow)
2007	0.040	0.092	2.04
Total (1997-2007)	0.058	0.318	1.84

Notes: NA = not applicable.

Figure 3–23. Volume-Weighted Average Pu and Am Compliance Values at SW027: Calendar Year Ending First Quarter of CY 2007

Figure 3–24. Volume-Weighted Average Total U Compliance Values at SW027: Calendar Year Ending First Quarter of CY 2007

Table 3–14 shows that all of the annual average metals concentrations were less than the standard. Additionally, the long-term metals averages (1997–2007) were less than the standards. Figure 3–25 shows that none of the 85th percentile 30-day average metals concentrations were reportable for the quarter.

Table 3–14. Annual Volume-Weighted Average Hardness and Metals Concentrations at SW027 for 1997–2007

	Volume-Weighted Average Concentration (μg/L)					
Calendar Year	Hardness (mg/L)	Total Be	Dissolved Cd	Total Cr	Dissolved Ag	
1997	112	0.44	0.09	1.71	0.10	
1998	152	0.14	0.15	0.91	0.21	
1999	111	0.03	0.10	1.55	0.24	
2000	150	0.27	0.05	4.14	0.09	
2001	145	0.23	0.07	1.82	0.12	
2002	114	0.12	0.05	2.88	0.11	
2003	148	0.06	0.06	1.75	0.15	
2004	133	0.32	0.06	7.36	0.19	
2005	236	0.08	0.07	2.03	0.19	
2006	NA (no flow)	NA (no flow)	NA (no flow)	NA (no flow)	NA (no flow)	
2007	133	0.50	0.05	0.50	0.10	
Total (1997-2007)	138	0.21	0.08	2.28	0.16	

Note: Hardness units in mg/L.
NA = not applicable

Figure 3–25. Volume-Weighted Average Metals Compliance Values at SW027: Calendar Year Ending First Quarter of CY 2007

3.1.3.3 Location SW093

Monitoring location SW093 is located on North Walnut Creek 1,300 feet upstream of the A-Series Ponds (Figure 3–1). The northern portion of the COU contributes flow to SW093 through FC-2 and FC-3.

Table 3–15 shows that the majority of the annual average Pu and Am activities were below 0.15 pCi/L. Additionally, the long-term Pu and Am averages (1997–2007) are below 0.15 pCi/L. The average total U activities are all well below 10 pCi/L.

Table 3–15 shows an increase in Pu and Am activities during 2004. However, a significant reduction in both Pu and Am activities has been observed following Site closure. With the completion of the FCs, implementation of enhanced erosion controls, revegetation, soil stabilization, and lack of substantial runoff, transport of Pu and Am has been virtually eliminated.

Table 3-15. Annual Volume-Weighted Average Radionuclide Activities at SW093 for 1997-2007

Calendar Year	Volume	-Weighted Average Activity	/ (pCi/L)
Calellual Teal	Am-241	Pu-239,240	Total U
1997	0.035	0.052	2.38
1998	0.020	0.022	2.26
1999	0.025	0.038	1.95
2000	0.022	0.040	2.06
2001	0.011	0.015	2.14
2002	0.017	0.006	2.67
2003	0.039	0.056	2.34
2004	0.622	0.603	2.50
2005	0.029	0.022	3.97
2006	0.004	0.008	5.93
2007	0.010	0.008	3.07
Total (1997-2007)	0.080	0.085	2.44

Note: Data through April 8, 2007.

Figure 3–26. Volume-Weighted Average Pu and Am Compliance Values at SW093: Calendar Year Ending First Quarter of CY 2007

Figure 3–27. Volume-Weighted Average Total U Compliance Values at SW093: Calendar Year Ending First Quarter of CY 2007

Table 3–16 shows that all of the annual average metals concentrations were less than the action level. Additionally, the long-term metals averages (1997–2006) were less than the action levels. Figure 3–28 shows that none of the 85th percentile 30-day average metals concentrations were reportable for the quarter.

Table 3–16. Annual Volume-Weighted Average Hardness and Metals Concentrations at SW093 for 1997–2007

	Volume-Weighted Average Concentration (μg/L)				
Calendar Year	Hardness (mg/L)	Total Be	Dissolved Cd	Total Cr	Dissolved Ag
1997	168	0.43	0.07	2.36	0.12
1998	184	0.14	0.23	2.22	0.22
1999	152	0.20	0.13	5.08	0.16
2000	231	0.21	0.08	3.94	0.11
2001	247	0.36	0.07	6.49	0.11
2002	365	0.30	0.08	5.95	0.11
2003	257	0.29	0.09	6.88	0.16
2004	315	0.57	0.09	12.05	0.12
2005	337	0.11	0.05	1.92	0.11
2006	564	0.50	0.05	0.82	0.10
2007	288	0.50	0.05	0.83	0.10
Total (1997-2007)	239	0.30	0.10	4.88	0.14

Note: Hardness units in mg/L. Data through April 8, 2007.

Figure 3–28. Volume-Weighted Average Metals Compliance Values at SW093: Calendar Year Ending First Quarter of CY 2007

3.1.4 Area of Concern Wells and SW018

Area of Concern (AOC) wells (Figure 3–1 and Table 3–17) are located to evaluate potential ground water impacts to surface water. Impacts will be based on a minimum of two routinely scheduled sampling events in a row, not on a single data point. Analytical results from AOC wells are compared directly against the appropriate surface water standards in Table 1 of Attachment 2 to the RFLMA or the U threshold. Analytical data from surface water performance location SW018, where grab samples for volatile organic compounds (VOCs) are collected to support ground water objectives, are assessed in a manner similar to data from AOC wells.

Table 3-17. Sampling and Data Evaluation Protocols at AOC Wells and SW018

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
00193	Woman Creek upstream of Pond C-2	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 7 in Appendix D
00997	South Walnut Creek upstream of Pond B-5	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
10304	Southeast of 903 Pad/Ryan's Pit Plume at Woman Creek	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
10594	North Walnut Creek downstream of Pond A-1	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
11104	Downgradient, downstream	Semiannual grabs; Second and fourth calendar quarters (high-and low-water conditions)	VOCs, U	see Figure 7 in Appendix D
4087	Below Landfill Pond	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
42505	Terminus of FC-2	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 7 in Appendix D
89104	Downgradient at Woman Creek	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 7 in Appendix D
B206989	Below Landfill Pond	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
SW018	FC-2 west of former Building 771 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 7 in Appendix D

Notes: ^aSamples for the analysis of U will be field-filtered using a 0.45 micron in-line filter.

Nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

3.1.4.1 Data Evaluation

No AOC wells were monitored in the first quarter of 2007, nor was SW018.

3.1.5 Boundary Wells

Boundary wells (Figure 3–1 and Table 3–18) are located at the Walnut Creek/Indiana Street and Woman Creek/Indiana Street intersections to provide surrounding stakeholders with assurance that ground water leaving the historic extent of RFETS in these drainages is not adversely impacted by the Site.

Boundary wells are not required by the CAD/ROD, nor have they supported the technical ground water monitoring requirements defined by the preceding IMPs. However, these wells are included in the network to satisfy operational monitoring requirements in RFLMA.

Table 3-18. Sampling and Data Evaluation Protocols at Boundary Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
10394	Woman Creek at Indiana Street	Annual grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D
41691	Walnut Creek at Indiana Street	Annual grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 7 in Appendix D

Notes: ^aSamples for the analysis of U will be field-filtered using a 0.45 micron in-line filter.

Nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

3.1.5.1 Data Evaluation

No Boundary wells were monitored in the first quarter of 2007.

3.1.6 Sentinel Wells

Sentinel wells (Figure 3–1 and Table 3–19) are located near downgradient edges of contaminant plumes, in drainages, at ground water treatment systems, and along contaminant pathways to surface water. These wells are monitored to determine whether concentrations of contaminants are increasing, thereby providing advance warning of potential ground water quality impacts to the downgradient AOC well(s). Confirmation of a potential impact to downgradient wells will require an analytical record that consistently indicates an impact, not a single data point that indicates a contaminant has been detected.

Sentinel wells are used to monitor the performance of an accelerated action (including soil/source removals, in situ contaminant plume treatment, ground water intercept components of treatment systems, and facility demolitions) and assess contaminant trends at important locations. Data from Sentinel wells are supplemented by those from Evaluation wells, and are used to determine when monitoring may cease or additional remedial work should be considered.

Table 3-19. Sampling and Data Evaluation Protocols at Sentinel Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
00797	South of former Building 881 (B881) area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 8 in Appendix D
04091	East of source area	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 8 in Appendix D
11502	Southeast of former B444 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 8 in Appendix D
15699	Downgradient of MSPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
20205	North/northeast of former B771/774 area	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs, U, Pu, Am	see Figure 8 in Appendix D
20505	North of former B771/774 area	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs, U, Pu, Am	see Figure 8 in Appendix D
20705	North/northwest of former B771 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate, Pu, Am	see Figure 8 in Appendix D
23296	Downgradient of ETPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 8 in Appendix D
30002	Downgradient at North Walnut Creek	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
33703	Downgradient of source area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
37405	North/northeast part of former B371/374 area	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs, U, nitrate, Pu, Am	see Figure 8 in Appendix D
37505	North part of former B371 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 8 in Appendix D
37705	East/southeast of former B371/374 area at foundation drain confluence	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate, Pu, Am	see Figure 8 in Appendix D
40305	East part of former B444 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 8 in Appendix D
45605	Adjacent to remnants of SW056 French drain and drain interruption	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 8 in Appendix D
52505	West of former IHSS 118.1 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
70099	Northwest (side-gradient) of SPPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	U, nitrate	see Figure 8 in Appendix D
88104	South part of former B881 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U	see Figure 8 in Appendix D
90299	Southeast part of 903 Pad/Ryan's Pit Plume at SID	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D

Table 3-19 (continued). Sampling and Data Evaluation Protocols at Sentinel Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
90399	Southeast part of 903 Pad/Ryan's Pit Plume at SID	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
91203	Downgradient of Oil Burn Pit #2 source area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
91305	South of confluence of FC-4 and FC-5	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs, U, nitrate	see Figure 8 in Appendix D
95099	Downgradient of ETPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
95199	Downgradient of ETPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 8 in Appendix D
95299	Downgradient of ETPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D
99305	East part of former B991 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 8 in Appendix D
99405	Southeast part of former B991 area	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 8 in Appendix D
P210089	Downgradient (north) portion of SPP	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs, U, nitrate	see Figure 8 in Appendix D
TH046992	Downgradient of ETPTS intercept trench	Semiannual grabs; Second and fourth calendar quarters (highand low-water conditions)	VOCs	see Figure 8 in Appendix D

Notes: ^aSamples for the analysis of U will be field-filtered using a 0.45 micron in-line filter.

Nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

3.1.6.1 Data Evaluation

No Sentinel wells were monitored in the first quarter of 2007 for routine purposes. However, Sentinel well 45605 was monitored as a special case. This was due to its physical condition: located within the slump block south of former Building 991, this well appears to be very close to being no longer usable. Samples were collected in case future attempts fail.

Analytical data for the sample collected during this quarter are included in Appendix A, and are generally consistent with previous results at this well. These data will be discussed in the 2007 Annual Report.

3.1.7 Evaluation Wells

Evaluation wells (Figure 3–1 and Table 3–20) are located within ground water contaminant plumes and near plume source areas, and within the interior of the COU at the Site. As such, they may monitor the effects of accelerated actions that have been performed (e.g., source removal and in situ treatment). Data from these Evaluation wells are therefore appropriate to determine whether monitoring of a particular plume and source area may cease, and provide data to support the determination of whether corresponding ground water plume treatment systems may be

decommissioned. In addition, Evaluation wells are used to support any ground water evaluations that may be needed as a result of changing contaminant characteristics in downgradient Sentinel and/or AOC wells. Data from these wells also assist evaluations of predictions made through ground water modeling efforts.

Table 3-20. Sampling and Data Evaluation Protocols at Evaluation Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
00191	East of former 903 Pad area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
00203	Downgradient (south) portion of SPP	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
00491	Southeast of former 903 Pad area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
00897	Mound Site source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
3687	East Trenches source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
03991	East of East Trenches source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
05691	East Trenches source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
07391	Ryan's Pit source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
18199	North of former IHSS 118.1 source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
20902	Northwest of former IHSS 118.1 source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
21505	West of former B776/777 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
22205	Downgradient (north) portion of SPP	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
22996	East/northeast part of former B886 area	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
30900	PU&D Yard Plume source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
33502	Oil Burn Pit #1 source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
33604	Oil Burn Pit #1 source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
33905	North of former 231 Tanks area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D

Table 3–20 (continued). Sampling and Data Evaluation Protocols at Evaluation Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
40005	West part of former B444 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
40205	South part of former B444 end	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
50299	East of former 903 Pad area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
51605	Downgradient, adjacent to GS13	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
55905	North part of former B559 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
56305	West part of former B559 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
70705	East part of former B707 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
79102	SPP source area - north	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
79202	SPP source area - north	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
79302	SPP source area - northeast	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
79402	SPP source area - northeast	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
79502	SPP source area - east	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
79605	SPP source area - east	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
88205	South part of former B881 area	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
891WEL	OU1 Plume source area	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
90402	Southeast of former 903 Pad area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
90804	Southeast part of 903 Pad/Ryan's Pit Plume	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
91105	Oil Burn Pit #2 source area	Biennial grabs; Second calendar quarter (high-water conditions)	U, nitrate	see Figure 9 in Appendix D
B210489	Downgradient of SPPTS	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D

Table 3-20 (continued). Sampling and Data Evaluation Protocols at Evaluation Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
P210189	SEP-area VOC plume source area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
P208989	SPP source area - north	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U, nitrate	see Figure 9 in Appendix D
P114689	Southwest of former B559 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
P115589	West part of former B551 Warehouse area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs, U	see Figure 9 in Appendix D
P419689	Southeast of former B444 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D
P416889	Southeast of former B444 area	Biennial grabs; Second calendar quarter (high-water conditions)	VOCs	see Figure 9 in Appendix D

Notes: ^aSamples for the analysis of U will be field-filtered using a 0.45 micron in-line filter.

Nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

3.1.7.1 Data Evaluation

No Evaluation wells were monitored in the first quarter of 2007.

3.1.8 Investigative Monitoring

When reportable water-quality measurements are detected by surface water monitoring at POEs or POCs, additional monitoring may be required to identify⁹ the source and evaluate for mitigating action. Although not required by RFLMA, this Investigative monitoring objective is intended to provide upstream water-quality information if reportable water-quality values are detected at POEs or POCs. Data collection is generally limited to POE and POC analytes and is intended to be discontinued once acceptable water quality has been demonstrated at POEs and POCs for an extended period.

Data collection is currently implemented at the locations listed in Table 3–21 and shown on Figure 3–1. The majority of these locations are sampled primarily to satisfy other monitoring objectives, although the data are used for this Investigative objective. The current locations were not chosen in response to a specific source evaluation. They were chosen preemptively as a best management practice (BMP) immediately following completion of the RFP/RFETS Closure Project and are intended to be discontinued under this monitoring objective based on data evaluation. Any future data collection upstream of POEs and POCs, subject to the consultative process, is not limited to the locations in Table 3–21. The parties may also elect to collect data using other methods, subject to the characteristics of the reportable water-quality values and through the consultative process.

0

⁹ Note that the term "identify" is used here to mean "locate." Characterization is also implied.

Table 3-21. Sampling and Data Evaluation Protocols at Investigative Monitoring Locations

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
GS05	Woman Creek at western POU boundary	Continuous flow-paced composites; frequency varies (target is 8 per year) ^a total U isotopes ^b		see Figure 6-15 in Appendix D
GS13	North Walnut Creek just upstream of A-Series Bypass	Continuous flow-paced composites; frequency varies (target is 8 per year) ^a	total U isotopes ^b	see Figure 6-15 in Appendix D
GS51	Drainage area tributary to the SID and south of former 903 Pad/Lip	Continuous flow-paced composites; frequency varies (target is 8 per year) ^a	total Pu and Am; [TSS [°]]	see Figure 6-15 in Appendix D
GS59	Woman Creek 800 feet east of OLF	Continuous flow-paced composites; frequency varies (target is 8 per year) ^a	total U isotopes ^b	see Figure 6-15 in Appendix D
SW018	FC-2 west of former Building 771 area	Continuous flow-paced composites; frequency varies (target is 8 per year) ^a	total Pu and Am; [TSS ^c]	see Figure 6-15 in Appendix D

Notes:

3.1.8.1 Data Evaluation

During the first quarter of CY 2007, five investigative locations were operational (Table 3–21). No routine data evaluation for the Investigative objective is presented in this quarterly report. Refer to the analytical data accompanying this document for additional information.

3.1.9 Present Landfill Monitoring

This objective deals with monitoring surface water and ground water at the PLF to determine the short- and long-term effectiveness of the remedy. These requirements were initially identified in the *Final Interim Measure/Interim Remedial Action for IHSS 114 and RCRA Closure of the RFETS Present Landfill*, Appendix B: Post-Accelerated Action Monitoring and Long-Term Surveillance and Monitoring Considerations (DOE 2004), and finalized in the *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan* (PLF M&M Plan; DOE 2006c).

Water monitoring locations for the PLF are shown on Figure 3–1. The surface water and treatment system monitoring requirements deal specifically with the PLFTS and are discussed in detail under the Present Landfill Treatment System heading in Section 3.1.11, "Ground Water Treatment System Monitoring." Details regarding general ground water monitoring are provided below.

Monitoring wells supporting the PLF are classified as RCRA wells. Three of these wells are located upgradient of the landfill, and three are downgradient of the landfill but upgradient of the Landfill Pond. This network and the monitoring requirements are specified in the PLF M&M Plan. Prior to late 2005 when this network was finalized, a different set of monitoring wells comprised the RCRA network for the PLF. As a result of this change, data from the new network cannot be compared accurately against data from the older network. Additional monitoring wells

^aFrequency depends on available flow.

^bU isotopes are U-233,234 + U-235 + U-238.

^cTotal suspended solids (TSS) is analyzed when the composite sampling period is within TSS hold-time limits.

are present in the general vicinity of the PLF; however, they do not contribute to the RCRA monitoring of the facility and, therefore, are addressed elsewhere.

Sampling and data evaluation protocols for the RCRA wells at the PLF are provided in Table 3–22.

Table 3-22. Sampling and Data Evaluation Protocols at PLF RCRA Monitoring Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
70193	Upgradient (northwest) of the upgradient end of the PLF	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D
70393	Upgradient (west/southwest) of the upgradient end of the PLF	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D
70693	Upgradient (southwest) of the upgradient end of the PLF	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D
73005	Downgradient (northeast) of the downgradient end of the PLF	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D
73105	Downgradient (east) of the downgradient end of the PLF at the PLFTS	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D
73205	Downgradient (southeast) of the downgradient end of the PLF	Quarterly each calendar quarter	VOCs, metals	see Figure 10 in Appendix D

Notes: ^aSamples for the analysis of metals will be field-filtered using a 0.45 micron in-line filter.

Laboratory analytes are limited to those based on the analytical methods listed in the PLF M&M Plan.

3.1.9.1 Data Evaluation

Results from monitoring the RCRA wells at the PLF (Appendix A) will be discussed and statistically evaluated as a part of the 2007 Annual Report.

3.1.10 Original Landfill Monitoring

This objective deals with monitoring surface water and ground water at the OLF to determine the short- and long-term effectiveness of the remedy. These requirements were initially identified in the *Draft Final IM/IRA of IHSS Group SW-2, IHSS 115, Original Landfill and IHSS 196, Filter Backwash Pond*, Appendix B: Post-Accelerated Action Monitoring and Long-Term Surveillance and Monitoring Considerations (DOE 2005a), and finalized in the *Final Landfill Monitoring and Maintenance Plan, Rocky Flats Environmental Technology Site, Original Landfill* (OLF M&M Plan; DOE 2006b).

Water monitoring locations for the OLF are shown on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–23 and Table 3–24.

Table 3-23. Sampling and Data Evaluation Protocols at OLF Surface Water Monitoring Locations

Location Code	Location Description	Sample Types / Frequencies	Analytes ^b	Data Evaluation
GS05; upgradient	Woman Creek at west POU fenceline	Quarterly grab samples ^a	total U isotopes ^c ; dissolved and total metals; VOCs; Hg	see Figure 12 in Appendix D
GS59; downgradient	Woman Creek 800 feet downstream of OLF	Quarterly grab samples ^a	total U isotopes ^c ; dissolved and total metals; VOCs; Hg	see Figure 12 in Appendix D

Notes: ^aSamples for isotopic U and metals are currently collected as continuous flow-paced composites in conjunction with the Investigative monitoring objective; decisions specifically for the OLF monitoring objective only require quarterly grabs.

Table 3-24. Sampling and Data Evaluation Protocols at OLF RCRA Monitoring Wells

Location Code	Location Description	Sample Types / Frequencies	Analytes ^a	Data Evaluation
P416589	Upgradient (north) of the OLF	Quarterly each calendar quarter	VOCs, SVOCs, metals	see Figure 10 in Appendix D
80005	Downgradient (south) of the western portion of the OLF	Quarterly each calendar quarter	VOCs, SVOCs, metals	see Figure 10 in Appendix D
80105	Downgradient (south) of the central portion of the OLF	Quarterly each calendar quarter	VOCs, SVOCs, metals	see Figure 10 in Appendix D
80205	Downgradient (south) of the eastern portion of the OLF	Quarterly each calendar quarter	VOCs, SVOCs, metals	see Figure 10 in Appendix D

Notes: ^aSamples for the analysis of metals will be field-filtered using a 0.45 micron in-line filter.

Laboratory analytes are limited to those based on the analytical methods listed in the OLF M&M Plan.

3.1.10.1 Data Evaluation

Analytical results for GS59 and GS05 are compared, per Figure 12 in Appendix D, to the appropriate surface water standard in Table 1 of Attachment 2 to RFLMA. For the first quarter CY 2007 samples, all analytical results were acceptable.

Results from monitoring the RCRA wells at the OLF (Appendix A) will be discussed and statistically evaluated as a part of the 2007 Annual Report.

3.1.11 Ground Water Treatment System Monitoring

Contaminated ground water is intercepted and treated in four areas of the Site. Three of these systems (MSPTS, ETPTS, and SPPTS) include a ground water intercept trench (collection trench), which is similar to a French drain with an impermeable membrane on the downgradient side. Ground water entering the trench is routed through a drain pipe into one or more treatment cells, where it is treated and then discharged to surface water. The fourth system (PLFTS) treats water from the north and south components of the GWIS and flow from the PLF Seep.

Water monitoring at the MSPTS, ETPTS, and SPPTS includes a minimum of three sample collection points: untreated influent entering the treatment system, treated effluent exiting the

^bLaboratory analytes are limited to those based on the analytical methods listed in the OLF M&M Plan.

^cU isotopes are U-233,234 + U-235 + U-238.

system, and a surface water performance location. At the PLFTS, the treated effluent and surface water sampling locations are typically the same; this is discussed in further detail below.

The fundamental questions at each system are whether (1) influent water quality indicates treatment is still necessary, (2) effluent water quality indicates system maintenance is required, and (3) surface water quality suggests impacts from inadequate treatment of influent.

3.1.11.1 MSPTS

Monitoring locations specific to the MSPTS are displayed on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–25. In addition to the monitoring locations shown, several piezometers are present within the collection trench. Although these are no longer routinely monitored, they are retained for troubleshooting purposes.

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
MOUND R1-0	Influent sampling location	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 11 in Appendix D
MOUND R2-E	Effluent sampling location	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 11 in Appendix D
GS10	Downgradient surface water performance location	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 11 in Appendix D

Table 3-25. Sampling and Data Evaluation Protocols at MSPTS Monitoring Locations

3.1.11.2 Data Evaluation

The MSPTS was not monitored in the first quarter of CY 2007.

3.1.11.3 ETPTS

Monitoring locations specific to the ETPTS are displayed on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–26. In addition to the monitoring locations shown, several piezometers are present within the collection trench. Although these are no longer routinely monitored, they are retained for troubleshooting purposes.

Table 3-26. Sampling and Data Evaluation	Protocols at ETPTS Monitoring Locations
--	---

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
ET INFLUENT	Influent sampling location			see Figure 11 in Appendix D
ET EFFLUENT	JENT Effluent sampling location Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)		VOCs	see Figure 11 in Appendix D
POM2	Downgradient surface water performance location	Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)	VOCs	see Figure 11 in Appendix D

3.1.11.4 Data Evaluation

The ETPTS was not monitored in the first quarter of CY 2007.

3.1.11.5 SPPTS

Monitoring locations specific to the SPPTS are presented on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–27. In addition to the monitoring locations, several piezometers were installed within the collection trench. Although these are no longer routinely monitored, they are retained for troubleshooting purposes.

Table 3-27. Sampling and Data Evaluation Protocols at SPPTS Monitoring Locations

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
SPIN	Influent sampling location	· · · · · · · · · · · · · · · · · · ·		see Figure 11 in Appendix D
SPPMM01	Effluent sampling location	• I calennal nuariers minn, and inw-water i		see Figure 11 in Appendix D
GS13	Downgradient surface water performance location Semiannual grabs; Second and fourth calendar quarters (high- and low-water conditions)		U, nitrate	see Figure 11 in Appendix D

Notes: ^aInfluent and effluent samples for the analysis of U will be filtered in the field using a 0.45 micron in-line filter. Samples collected for U at GS13 will typically be flow-paced, unfiltered, and analyzed for U isotopes; however, if desired they may be collected as grab samples and filtered consistent with influent and effluent collection methods. U data at GS13 support other monitoring objectives that are not addressed here. Nitrate is analyzed as nitrate+nitrite as N; this result is conservatively compared to the nitrate standard only.

3.1.11.6 Data Evaluation

The SPPTS was not scheduled for routine monitoring in the first quarter of CY 2007; however, locations supporting this system were monitored during this period as part of a special, ongoing evaluation of system performance. Table 3–28 summarizes this special sampling.

Table 3-28. Special Sampling of SPPTS Monitoring Locations in First Quarter 2007

Location	Sample Dates	Samples Collected	
SPIN	1/11/07, 2/15/07, 3/6/07, 3/19/07	Nitrate, U	
SPPMM01	1/11/07, 2/15/07, 3/6/07, 3/19/07	Nitrate, U	
SPP Discharge Gallery	1/11/07, 2/15/07, 3/6/07, 3/19/07	Nitrate, U	
GS13	1/11/07, 2/15/07, 3/6/07, 3/19/07	Nitrate, U	

Note: Location GS13 was also monitored to support routine surface water monitoring objectives on two additional dates in both March and April. See text on surface water monitoring for details.

Results of these samples are provided in Appendix A, and indicate nitrate and U continued to be removed from ground water flowing through the SPPTS. However, concentrations of these constituents in system effluent did increase slightly during the first quarter of 2007. Concentrations of nitrate and U were as high as 21 mg/L (influent concentration was 210 mg/L)

and $16 \mu g/L$ (influent concentration was $42 \mu g/L$), respectively. These concentrations coincided with a period of elevated flow through the system, suggesting reduced residence time and a correspondingly reduced exposure of influent to the treatment media. This system continues to be sampled on a more frequent basis, and preliminary data from subsequent samples (i.e., collected in the early portion of the second quarter of 2007) indicate concentrations have decreased (coincidental with flow) to more typical values.

3.1.11.7 Present Landfill Treatment System

This objective deals with monitoring surface water and ground water at the PLF to determine the short- and long-term effectiveness of the remedy. These requirements were initially identified in the *Final Interim Measure/Interim Remedial Action for IHSS 114 and RCRA Closure of the RFETS Present Landfill*, Appendix B: Post-Accelerated Action Monitoring and Long-Term Surveillance and Monitoring Considerations (DOE 2004), and finalized in the PLF M&M Plan (DOE 2006c).

Water monitoring locations for the PLF are shown on Figure 3–1. The general ground water monitoring requirements deal specifically with the RCRA wells and are discussed in detail in Section 3.1.9, "Present Landfill Monitoring." Details regarding surface water and treatment system monitoring are provided below.

As part of PLF closure, a passive seep interception and treatment system has been installed to treat landfill seep water and GWIS water. There are three sources of influent to the treatment system: two GWIS pipes and the PLF seep. Effluent for the treatment system eventually flows to the Landfill Pond. This section presents the monitoring data for the treatment system effluent as well as the Landfill Pond if the treatment system effluent exceeds surface water standards. Details regarding PLFTS monitoring can be found in the PLF M&M Plan.

Water monitoring locations for the PLFTS are shown on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–29.

Table 3-29. Sampling and Data Evaluation Protocols at PLFTS Monitoring Locations

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
GWISINFNORTH	Northern GWIS influent to the treatment system	Quarterly grabs	VOCs, isotopic U, total and dissolved metals, nitrate, total Hg	see Figure 11 in Appendix D
GWISINFSOUTH	Southern GWIS influent to the treatment system	Quarterly grabs	VOCs, isotopic U, total and dissolved metals, nitrate, total Hg	see Figure 11 in Appendix D
PLFSEEPINF	Landfill seep influent to the treatment system	Quarterly grabs	VOCs, isotopic U, total and dissolved metals, total Hg	see Figure 11 in Appendix D
PLFSYSEFF	Effluent from the treatment system	Quarterly grabs	VOCs, isotopic U, total and dissolved metals, SVOCs, total Hg	see Figure 11 in Appendix D
PLFPONDEFF	Landfill Pond at the downstream (east) end	As needed; triggered by data evaluation	As needed; determined by decision rule	see Figure 11 in Appendix D

Note: Nitrate is analyzed as nitrate+nitrite as N.

3.1.11.8 Data Evaluation

Table 3–30 summarizes the PLF routine quarterly sample collection for the first quarter of CY 2007. During the February 22, 2007, sample at the PLFSEEPINF, the flow rate was 0.53 gallons per minute. As of March 31, 2007, the Landfill Pond remained in a flow-through configuration.

Refer to the analytical data accompanying this document (Appendix A).

Table 3-30. First Quarter of CY 2007 Routine Grab Sampling at the PLF

Location Code	Collection Date/Time	Analytes
GWISINFNORTH	2/22/07 9:45	VOCs, isotopic U, total and dissolved metals, nitrate+nitrite, total Hg
GWISINFSOUTH	DRY	NA
PLFSEEPINF	2/22/07 9:15	VOCs, isotopic U, total and dissolved metals, total Hg
PLFSYSEFF	2/22/07 9:00	VOCs, isotopic U, total and dissolved metals, SVOCs, total Hg

NA = not applicable.

Analytical results for the treatment system effluent (PLFSYSEFF) are compared to the appropriate surface water standards listed in Table 1 of Attachment 2 to RFLMA. During the routine quarterly sampling, all analytical results were less than the applicable surface water standard.

3.1.12 Pre-Discharge Monitoring

This monitoring objective deals with pre-discharge sampling of Ponds A-4, B-5, and C-2, or any other upstream pond functioning as a terminal pond, as a BMP to indicate compliance with surface water quality standards (see Table 1 of Attachment 2 to RFLMA) at the downstream POCs. Pre-discharge samples are collected at Ponds A-4, B-5, and C-2 on North Walnut Creek, South Walnut Creek, and Woman Creek, respectively. These locations are shown on Figure 3–1. Sampling and data evaluation protocols are summarized in Table 3–31.

Table 3-31. Sampling and Data Evaluation Protocols at Pre-Discharge Monitoring Locations

Location Code	Location Description	Sample Types /Frequencies	Analytes	Data Evaluation
A4 POND	Pond A-4 at east end of pond near outlet works	Prior to discharge	Pu, Am, isotopic U ^a , nitrate	Consultation with regulators prior to discharge
B5 POND	Pond B-5 at east end of pond near outlet works	Prior to discharge	Pu, Am, isotopic U, nitrate	Consultation with regulators prior to discharge
C2 POND	Pond C-2 at east end of pond near outlet works	Prior to discharge	Pu, Am, isotopic U	Consultation with regulators prior to discharge

Notes: ^aIsotopes U-233,234; U-235; U-238.

Nitrate is analyzed as nitrate+nitrite; the nitrate+nitrite result is conservatively compared to the nitrate standard only.

3.1.12.1 Data Evaluation

Ponds A-4 and B-5 were pre-discharge sampled on February 12, 2007. Data suggested that water quality was acceptable for discharge (see Appendix A).

3.2 Ecological Monitoring

During the first quarter of 2007, the Ecology Program continued summarizing and compiling the data that had been collected throughout the growing season in 2006 for the LM annual report and for the annual EPA wetland report. The revegetation project was started and completed during this time. A total of 69 acres were revegetated. Seeding and weed surveys were begun for the year and the first of the willow stake plantings were installed.

3.2.1 Regulatory Reporting and Other Issues

Data analysis and summarization of results were completed for the Annual Wetland Mitigation Monitoring report due to EPA. The final report was submitted to EPA the week of February 23, 2007.

Data for the ecology section of the RFS Annual Report of Site Surveillance and Maintenance Activities for Calendar Year 2006 were analyzed, summarized, and compiled.

A notification was written and submitted to the U.S. Fish and Wildlife Service (USFWS) for the installation of a temporary flume at the outflow of the Solar Pond Discharge Gallery in north Walnut Creek. Data of the water flow from the discharge gallery are needed to help evaluate how the SPPTS is functioning.

Ecology personnel continued to assist with the 5-year CERCLA report for Rocky Flats, along with working on the ecology and other sections of the RFSOG.

The vegetation surveys for the OLF and the PLF were conducted.

3.2.2 Regulatory Project Support

Ecology staff provided support for the Solar Pond Discharge Gallery temporary flume installment and the DOE COU fence installation project. In support of the COU fence, ecology staff flagged wetland and PMJM habitat at locations where the fence was to be built in order to help avoid and minimize disturbances to these sensitive areas.

3.2.3 Revegetation

The road/parking lot revegetation project began the week of January 8, 2007. Thirty-two acres were revegetated on roads that were no longer needed and at former parking lot locations (Figure 3–29). Where the parking lots had been, there was little or no vegetation establishment a year or more after initial seeding. Seedbed preparation consisted of placement of compost at a rate of 40 tons/acre and ripping/scarifying the road surface to a depth of 12 to 18 inches. (dependent on location). Mycorrhizal inoculant and Biosol® (a slow-release fertilizer) were added and tilled in, and areas were then drill-seeded with the appropriate seed mix. FlexterraTM (a flexible growth media) was blown over the top of the prepared revegetation areas for erosion

control. After completion of the initial revegetation work, an additional 37 acres were added to the revegetation project in mid-February. The subcontractor was able to start as soon as they had finished with the original 32 acres. Despite snow and wind hampering work at times, all revegetation was completed by the week of March 23, 2007. With the winter and spring snows, the germination and establishment of vegetation at these locations has been very good thus far this spring.

3.2.4 Erosion Control/Reseeding

Additional erosion controls were added at the SPPTS cell area and along the road to the treatment cell in order to prevent erosion and catch sediment from snowmelt. The area was then reseeded with the mesic hillside seed mixture.

RegreenTM, a sterile wheat and wheatgrass hybrid was purchased and mixed in with the mesic hillside seed mixture and seeded in areas where there was little to no ground cover. RegreenTM is beneficial for areas in which the native seed has not yet germinated or is very sparse, and helps provide some ground cover quickly for erosion control. Since RegreenTM is sterile there is not a problem with it out-competing the native seeded grasses after the first growing season. Areas where the Regreen/mesic hillside mix was applied were FC-1, FC-2, FC-4, the OLF, the MSPTS, and the SPPTS.

Along with hand broadcast seeding, an ATV-mounted seeder was used late this winter. In addition to the revegetation project mentioned in the previous section, a total of approximately 65 acres were seeded in the first quarter 2007, either by hand or with the ATV-mounted seeder.

3.2.5 Weed Control/Monitoring

An amendment to the Biological Evaluation for weed control in PMJM habitat was written to improve the ability to control noxious weeds in this habitat. Based on the work conducted in 2006 in PMJM habitat and in consultation with the weed control subcontractor, two new herbicides (Escort and Clarity) were added to the list of compounds that could be used under certain conditions in PMJM habitat. In addition, the amendment allows for mowing in PMJM habitat during the growing season in nonmitigation areas with certain restrictions. The amendment was submitted to USFWS for consultation and concurrence was received in April 2007. The changes will further improve the ability to control weeds in PMJM habitat.

Early spring weed surveys were conducted within the COU to help identify potential locations for spring herbicide applications.

3.2.6 Wetland Maintenance/Plantings

Along the north edge of the PLF pond where a slump formed during the winter of 2006/2007, 251 coyote willow stakes were installed along the slump line and the north pond edge. The area was then seeded with the mesic hillside seed mixture and collected yucca seed. The goal is that the willow and yucca roots will help hold the soil in place and stabilize the area. In addition the water uptake by the shrubs will help dry out the area around the slump and crack.

Figure 3-29. RFS Revegetation Areas

This page intentionally left blank

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page 3–52

Approximately 450 bare root shrubs were purchased from the Colorado State Forestry Service to plant around the mitigated wetlands at the site. The shrub species purchased were coyote willow, peachleaf willow, chokecherry, native plum, golden currant, and wax currant. The Solar Pond Discharge Gallery ditch was seeded with the wetland seed mixture used at the Site.

3.3 RFLMA Ecological Sampling

The Ecological Risk Assessment determined that residual contamination does not represent a significant risk of adverse ecological effects. The CAD/ROD, however, requires that specific additional sampling be conducted to reduce the uncertainties determined in the Ecological Risk Assessment. Ecological sampling and data evaluation protocols are summarized in Table 3–32. These locations are shown on Figure 3–1.

Table 3-32. Sampling and Data Evaluation Protocols for RFLMA Ecological Sampling

Location Code	Location Description	Sample Types / Frequencies	Analytes	Data Evaluation
A4 POND	Pond A-4 at east end of pond near outlet works (water); at deepest location in pond (sediment)	Quarterly grabs (water); One- time (sediment)	Ammonia, cyanide, Ra-228	Consultation with regulators
B5 POND	Pond B-5 at east end of pond near outlet works (water); at deepest location in pond (sediment)	Quarterly grabs (water); One- time (sediment)	Ammonia, cyanide, Ra-228	Consultation with regulators
C2 POND	Pond C-2 at east end of pond near outlet works (water); at deepest location in pond (sediment)	Quarterly grabs (water); One- time (sediment)	Ammonia, cyanide, Ra-228	Consultation with regulators

Notes:

3.3.1 Data Evaluation

During the first quarter of CY 2007, water samples were collected from all three ponds, as scheduled. No routine data evaluation for this monitoring is presented in this quarterly report. Refer to the analytical data accompanying this document for additional information.

^aFrequency depends on available flow.

^bU isotopes are U-233,234 + U-235 + U-238.

^cTotal suspended solids (TSS) is analyzed when the composite sampling period is within TSS hold-time limits.

End of current text

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700 Page 3–54

4.0 References

- CDPHE, USDOE, USEPA, 1996. *Final Rocky Flats Cleanup Agreement*, Federal Facility Agreement and Consent Order, CERCLA VIII-96-21 RCRA (3008(h)) VIII-96-01, State of Colorado Docket #96-07-19-01.
- DOE (U.S. Department of Energy), 2004. *Final Interim Measures/Interim Remedial Action for IHSS 114 and RCRA Closure of the RFETS Present Landfill*, "Appendix B: Post-Accelerated Action Monitoring and Long-Term Surveillance and Monitoring Considerations," Golden, Colorado.
- DOE (U.S. Department of Energy), 2005a. Final Interim Measure/Interim Remedial Action for the Original Landfill, March.
- DOE (U.S. Department of Energy), 2005b. Rocky Flats Site, Colorado, *Revegetation Plan*, U.S. Department of Energy, Rocky Flats Office of Legacy Management, Broomfield, Colorado, December.
- DOE (U.S. Department of Energy), 2005c. Rocky Flats, Colorado, *Site Vegetation Management Plan*, U.S. Department of Energy, Rocky Flats Office of Legacy Management, Broomfield, Colorado, December.
- DOE (U.S. Department of Energy), 2006a. Rocky Flats Site, *Erosion Control Guidelines*, in Preparation, U.S. Department of Energy, Rocky Flats Office of Legacy Management, Broomfield, Colorado.
- DOE (U.S. Department of Energy), 2006b. *Final Landfill Monitoring and Maintenance Plan, Rocky Flats Environmental Technology Site, Original Landfill*, Rocky Flats Environmental Technology Site, Golden, Colorado, February.
- DOE (U.S. Department of Energy), 2006c. *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan*, Rocky Flats Environmental Technology Site, Golden, Colorado, May.
- DOE (U.S. Department of Energy), 2006d. *Annual Report of Site Surveillance and Maintenance Activities: Calendar Year 2005*, Rocky Flats Site, Golden, Colorado, June.
- DOE (U.S. Department of Energy), 2006e. RCRA Facility Investigation-Remedial Investigation/Corrective Measures Study-Feasibility Study Report for the Rocky Flats Environmental Technology Site. June
- DOE (U.S. Department of Energy), 2006f. *Quarterly Report of Site Surveillance and Maintenance Activities: First Quarter Calendar Year 2006*, Rocky Flats Site, Golden, Colorado, June.
- DOE (U.S. Department of Energy), 2006g. 2006 Integrated Monitoring Plan Background Document, Rocky Flats Site, July.

- DOE (U.S. Department of Energy), 2006h. 2006 Integrated Monitoring Plan Summary Document, Rocky Flats Site, July.
- DOE (U.S. Department of Energy), CAD/ROD 2006i. Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit, September.
- DOE (U.S. Department of Energy), 2006j. *Quarterly Report of Site Surveillance and Maintenance Activities: Second Quarter Calendar Year 2006*, Rocky Flats Site, Golden, Colorado, September.
- DOE (U.S. Department of Energy), 2007a. *Quarterly Report of Site Surveillance and Maintenance Activities: Third Quarter Calendar Year 2006*, Rocky Flats Site, Golden, Colorado, January.
- DOE (U.S. Department of Energy), 2007b. Rocky Flats Site Operations Guide, February.
- DOE (U.S. Department of Energy), 2007c. Rocky Flats Legacy Management Agreement, March 14.
- DOE (U.S. Department of Energy), 2007d. Operations and Maintenance Manual for the Rocky Flats Ground Water Treatment Systems, June.
- DOE (U.S. Department of Energy), 2007e. *Operations and Maintenance Plan for Rocky Flats Surface Water Control Project*, In Production.
- DOE (U.S. Department of Energy), 2007f. *Annual Rocky Flats Site Ecological Field Sampling Plan*, In Production.
- DOE (U.S. Department of Energy), 2007g. *Ecological Monitoring Methods Handbook*, Office of Legacy Management, Grand Junction, Colorado, In Production.
- Janecky, D.R., 2006. "Quantitative Evaluation of Mixture Components in RFETS Uranium Isotopic Analyses," in DOE 2006, RCRA Facility Investigation Remedial Investigation / Corrective Measures Study Feasibility Study Report for the Rocky Flats Environmental Technology Site, June, Attachment 3 to Section 8.

Quarterly Report of Site Surveillance and Maintenance Activities—1st Quarter CY 2007 Doc. No. S0334700

			LAB REQUISITION						LAB	SAMPLE	DETECTION	UNCER-	DATA VALIDATION
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
0487	WL	2/27/2007	07030756	71-55-6	1.1.1-Trichloroethane	N001	0.19	ug/L	J	F	0.16		J
0487	WL	2/27/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
0487	WL	2/27/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
0487	WL	2/27/2007	07030756	75-35-4	1,1-Dichloroethene	N001	0.91	ug/L	J	F	0.14		valid
0487	WL	2/27/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
0487	WL	2/27/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
0487	WL	2/27/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
0487	WL	2/27/2007	07030756	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
0487	WL	2/27/2007	07030756	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
0487	WL	2/27/2007	07030756	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
0487	WL	2/27/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
0487	WL	2/27/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
0487	WL	2/27/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
0487	WL	2/27/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
0487	WL	2/27/2007	07030756	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
0487	WL	2/27/2007	07030756	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
0487	WL	2/27/2007	07030756	56-23-5	Carbon tetrachloride	N001	3.7	ug/L		F	0.19		J
0487	WL	2/27/2007	07030756	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
0487	WL	2/27/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
0487	WL	2/27/2007	07030756	67-66-3	Chloroform	N001	2.2	ug/L		F	0.16		U
0487	WL	2/27/2007	07030756	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
0487	WL	2/27/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
0487	WL	2/27/2007	07030756	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
0487	WL	2/27/2007	07030756	75-09-2	Methylene chloride	N001	0.36	ug/L	JВ	F	0.32		U
0487	WL	2/27/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
0487	WL	2/27/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
0487	WL	2/27/2007	07030756	127-18-4	Tetrachloroethene	N001	2.4	ug/L		F	0.2		J
0487	WL	2/27/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
0487	WL	2/27/2007	07030756	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
0487	WL	2/27/2007	07030756	1330-20-7	Total Xylenes	N001	0.19	ug/L	U	F	0.19		valid
0487	WL	2/27/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
0487	WL	2/27/2007	07030756	10061-02-6	trans-1,3-dichloropropene		0.19	ug/L	U	F	0.19		valid
0487	WL	2/27/2007	07030756	79-01-6	Trichloroethene	N001	98	ug/L		F	0.64		valid
0487	WL	2/27/2007	07030756	75-01-4	Vinyl chloride		0.17	ug/L	U	F	0.17		valid
45605	WL	2/23/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		valid
45605	WL	2/23/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane		0.2	ug/L	U	F	0.2		valid
45605	WL	2/23/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
45605	WL	2/23/2007	07020741	75-35-4	1.1-Dichloroethene		0.17	ug/L	J	F	0.14		valid
45605	WL	2/23/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
45605	WL	2/23/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
45605	WL	2/23/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
45605	WL	2/23/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	Ū	F	0.13		valid
45605	WL	2/23/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	Ū	F	0.13		valid
45605	WL	2/23/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	Ū	F	0.13		valid
45605	WL	2/23/2007	07020741	541-73-1	1,3-Dichlorobenzene		0.16	ug/L	U	F	0.16		valid
45605	WL	2/23/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	Ū	F	0.16		valid
45605	WL	2/23/2007	07020741	71-43-2	Benzene		0.16	ug/L	U	F	0.16		valid
45605	WL	2/23/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	Ü	F	0.17		valid
45605	WL	2/23/2007	07020741	75-25-2	Bromoform	N001	0.17	ug/L	u	F	0.19		valid
45605	WL	2/23/2007	07020741	74-83-9	Bromomethane	N001	0.13	ug/L	Ü	F	0.13		valid
45605	WL	2/23/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	lu .	F.	0.19		valid
45605 45605	WL	2/23/2007	07020741	108-90-7	Chlorobenzene	N001	0.19	ug/L	ii	F.	0.19		valid
45605	WL	2/23/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/L ug/L	U	F.	0.17		valid
45605 45605	WL	2/23/2007	07020741	67-66-3	Chloroform	N001	0.17	ug/L	U.	F.	0.17		valid
45605	WL	2/23/2007	07020741	74-87-3	Chloromethane	N001	0.16	ug/L ug/L	U U	F	0.16		valid
		2/23/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	200	ug/L ug/L	l –	-	0.86		valid
45605	WL												

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
45605	WL	2/23/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	U	F	0.32		valid
45605	WL	2/23/2007	07020741	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
45605	WL	2/23/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
45605	WL	2/23/2007	07020741	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		valid
45605	WL	2/23/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
45605	WL	2/23/2007	07020741	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
45605	WL	2/23/2007	07020741	1330-20-7	Total Xylenes	N001	0.19	ug/L	U	F	0.19		valid
45605	WL	2/23/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	9.6	ug/L		F	0.15		valid
45605	WL	2/23/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
45605	WL	2/23/2007	07020741	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
45605	WL	2/23/2007	07020741	75-01-4	Vinyl chloride	N001	1.6	ug/L		F	0.17		valid
70193	WL	2/21/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		valid
70193	WL	2/21/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
70193	WL	2/21/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
70193	WL	2/21/2007	07020741	75-35-4	1,1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
70193	WL	2/21/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
70193	WL	2/21/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
70193	WL	2/21/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
70193	WL	2/21/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
70193	WL	2/21/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	Ū	F	0.13		valid
70193	WL	2/21/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
70193	WL	2/21/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
70193	WL	2/21/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	II	F	0.16		valid
70193	WL	2/21/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	11	F	2.8		valid
70193	WL	2/21/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	II	F	1.4		valid
70193	WL	2/21/2007	07020741	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
70193	WL	2/21/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	11	F	0.17		valid
70193	WL	2/21/2007	07020741	75-25-2	Bromoform	N001	0.17	ug/L	U	F	0.19		valid
70193	WL	2/21/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	II	F	0.21		valid
70193	WL	2/21/2007	07020741	7440-43-9	Cadmium	0001	0.49	ug/L	В	F	0.45		valid
70193	WL	2/21/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	II	F	0.19		valid
70193	WL	2/21/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	11	F	0.17		valid
70193	WL	2/21/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	II	F	0.17		valid
70193	WL	2/21/2007	07020741	67-66-3	Chloroform	N001	0.17	ug/L	11	F	0.16		valid
70193	WL	2/21/2007	07020741	74-87-3	Chloromethane	N001	0.10	ug/L	11	-	0.3		valid
70193	WL	2/21/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	11	-	0.15		valid
70193	WL	2/21/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	11	-	4.5		valid
70193	WL	2/21/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	11	<u>'</u>	0.12		valid
70193	WL	2/21/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	11	-	2.6		valid
70193	WL	2/21/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L ug/L	11	F	0.34		valid
70193	WL	2/21/2007	07020741	75-09-2	Methylene chloride	N001	0.34	ug/L	11	-	0.32		valid
70193	WL	2/21/2007	07020741	91-20-3	Naphthalene	N001	0.32	ug/L ug/L	11		0.32		valid
70193	WL	2/21/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L ug/L	11	<u>'</u>	7.8		valid
70193	WL	2/21/2007	07020741	95-47-6		N001	0.19		11	<u>'</u>	0.19		valid
70193 70193	WL	2/21/2007	07020741	7440-22-4	o-Xylene Silver	0001	2.8	ug/L ug/L	U II	r'	2.8		valid
70193	WL	2/21/2007	07020741	100-42-5		N001	0.17		11	<u>'</u>	0.17		valid
70193 70193	WL	2/21/2007	07020741	127-18-4	Styrene Tetrachloroethene	N001 N001	0.17	ug/L	U	r'	0.17		valid
	WL							ug/L	11	l.	-		
70193	_	2/21/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	r	0.17		valid
70193	WL	2/21/2007	07020741	100-41-4	Total Xylene	N001	0.22	ug/L	J	ir Ir	0.16		valid
70193	WL	2/21/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	r	0.15		valid
70193	WL	2/21/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	r	0.19		valid
70193	WL	2/21/2007	07020741	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
70193	WL	2/21/2007	07020741	7440-61-1	Uranium	0001	16	ug/L	U	 	16		valid
70193	WL	2/21/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
70193	WL	2/21/2007	07020741	7440-66-6	Zinc	0001	6.9	ug/L	В	F	4.5		valid
70393	WL	2/21/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	2.6	ug/L	ļ	F	0.16		valid
70393	WL	2/21/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	JF.	0.2		valid
70393	WL	2/21/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION	UNCER-	DATA VALIDATION QUALIFIERS
70393	WL	2/21/2007	07020741	75-35-4	1,1-Dichloroethene	N001	3.9	ug/L		F	0.14		valid
70393	WL	2/21/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
70393	WL	2/21/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
70393	WL	2/21/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
70393	WL	2/21/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
70393	WL	2/21/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
70393	WL	2/21/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
70393	WL	2/21/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
70393	WL	2/21/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
70393	WL	2/21/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
70393	WL	2/21/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
70393	WL	2/21/2007	07020741	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
70393	WL	2/21/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
70393	WL	2/21/2007	07020741	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
70393	WL	2/21/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
70393	WL	2/21/2007	07020741	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
70393	WL	2/21/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		valid
70393	WL	2/21/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
70393	WL	2/21/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
70393	WL	2/21/2007	07020741	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
70393	WL	2/21/2007	07020741	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
70393	WL	2/21/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
70393	WL	2/21/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
70393	WL	2/21/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
70393	WL	2/21/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
70393	WL	2/21/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
70393	WL	2/21/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	II	F	0.32		valid
70393	WL	2/21/2007	07020741	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
70393	WL	2/21/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
70393	WL	2/21/2007	07020741	95-47-6	o-Xylene	N001	0.19	ug/L	II	F	0.19		valid
70393	WL	2/21/2007	07020741	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
70393	WL	2/21/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	II	F	0.17		valid
70393	WL	2/21/2007	07020741	127-18-4	Tetrachloroethene	N001	2.3	ug/L	Ü	F	0.2		valid
70393	WL	2/21/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	П	F	0.17		valid
70393	WL	2/21/2007	07020741	100-41-4	Total Xylene	N001	0.16	ug/L	11	F	0.16		valid
70393	WL	2/21/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	11	F	0.15		valid
70393	WL	2/21/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	11	F	0.19		valid
70393	WL	2/21/2007	07020741	79-01-6	Trichloroethene	N001	8.7	ug/L		F	0.16		valid
70393	WL	2/21/2007	07020741	7440-61-1	Uranium	0001	20	ug/L	R	F	16		valid
70393	WL	2/21/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	II	F	0.17		valid
70393	WL	2/21/2007	07020741	7440-66-6	Zinc	0001	5.4	ug/L	B	F	4.5		valid
70693	WL	2/22/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	2.9	ug/L		F	0.16		valid
70693	WL	2/22/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	11	F	0.2		valid
70693	WL	2/22/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	11	F	0.32		valid
70693	WL	2/22/2007	07020741	75-35-4	1,1-Dichloroethene	N001	3	ug/L		F	0.14		valid
70693	WL	2/22/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	11	-	0.32		valid
70693	WL	2/22/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
70693	WL	2/22/2007	07020741	106-93-4	1.2-Dibromoethane	N001	0.18	ug/L ug/L	11	l. E	0.18		valid
70693	WL	2/22/2007	07020741	95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene	N001	0.18	ug/L ug/L	11	r F	0.18		valid
70693	WL	2/22/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L ug/L	11	-	0.13		valid
70693	WL	2/22/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L ug/L	11	r F	0.13		valid
	WL								11	 -			
70693	WL	2/22/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001 N001	0.16	ug/L	U	r	0.16		valid valid
70693		2/22/2007	07020741	106-46-7	1,4-Dichlorobenzene		0.16	ug/L	11	ir Ic	0.16		
70693	WL	2/22/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	11	Ir Ir	2.8		valid
70693	WL	2/22/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	r	1.4		valid
70693	WL	2/22/2007	07020741	71-43-2	Benzene	N001	0.16	ug/L	U	r	0.16		valid
70693	WL	2/22/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
70693	WL	2/22/2007	07020741	75-25-2	Bromoform	N001	0.19	ug/L	U	r	0.19		valid

LOCATION_CODE 70693 70693 70693 70693 70693	WL WL		LAB REQUISITION NUMBER	CAS	*****				LAB	SAMPLE	DETECTION	UNCER-	DATA VALIDATION
70693 70693 70693					ANALYTE	SAMPLE ID		UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
70693 70693	\/\/I	2/22/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
70693		2/22/2007	07020741	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
	WL	2/22/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	-3-	U	F	0.19		valid
70693	WL	2/22/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
	WL	2/22/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/ =	U	F	0.17		valid
70693	WL	2/22/2007	07020741	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
70693	WL	2/22/2007	07020741	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
70693	WL	2/22/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
70693	WL	2/22/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
70693	WL	2/22/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	-3-	U	F	0.12		valid
70693	WL	2/22/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
70693	WL	2/22/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
70693	WL	2/22/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	U	F	0.32		valid
70693	WL	2/22/2007	07020741	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
70693	WL	2/22/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
70693	WL	2/22/2007	07020741	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
70693	WL	2/22/2007	07020741	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
70693	WL	2/22/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
70693	WL	2/22/2007	07020741	127-18-4	Tetrachloroethene	N001	1.1	ug/L		F	0.2		valid
70693	WL	2/22/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
70693	WL	2/22/2007	07020741	100-41-4	Total Xylene	N001	0.19	ug/L	J	F	0.16		valid
70693	WL	2/22/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
70693	WL	2/22/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
70693	WL	2/22/2007	07020741	79-01-6	Trichloroethene	N001	2.2	ug/L		F	0.16		valid
70693	WL	2/22/2007	07020741	7440-61-1	Uranium	0001	16	ug/L	В	F	16		valid
70693	WL	2/22/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
70693	WL	2/22/2007	07020741	7440-66-6	Zinc	0001	5.7	ug/L	В	F	4.5		valid
73005	WL	2/23/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	0.16		U	F	0.16		valid
73005	WL	2/23/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
73005	WL	2/23/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
73005	WL	2/23/2007	07020741	75-35-4	1,1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
73005	WL	2/23/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
73005	WL	2/23/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5		U	F	1.5		valid
73005	WL	2/23/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
73005	WL	2/23/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13		U	F	0.13		valid
73005	WL	2/23/2007	07020741	107-06-2	1.2-Dichloroethane	N001	0.13	_	U	F	0.13		valid
73005	WL	2/23/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13		U	F	0.13		valid
73005	WL	2/23/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73005	WL	2/23/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73005	WL	2/23/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
73005	WL	2/23/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
73005	WL	2/23/2007	07020741	71-43-2	Benzene	N001	0.16		U	F	0.16		valid
73005	WL	2/23/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
73005	WL	2/23/2007	07020741	75-25-2	Bromoform	N001	0.19		U	F	0.19		valid
73005	WL	2/23/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
73005	WL	2/23/2007	07020741	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
73005	WL	2/23/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		valid
73005	WL	2/23/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
73005	WL	2/23/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17		U	F	0.17		valid
73005	WL	2/23/2007	07020741	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
73005	WL	2/23/2007	07020741	74-87-3	Chloromethane	N001	0.3		U	F	0.3		valid
73005	WL	2/23/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73005	WL	2/23/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
73005	WL	2/23/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
73005	WL	2/23/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
73005	WL	2/23/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34		U	F.	0.34		valid
73005	WL	2/23/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	11	F.	0.32		valid
73005	WL	2/23/2007		91-20-3	Naphthalene	N001	0.32		U	r.	0.22		valid

	1	I	LAB REQUISITION			1	1		LAB	SAMDLE	DETECTION	UNCER-	DATA VALIDATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
73005	WL	2/23/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
73005	WL	2/23/2007	07020741	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
73005	WL	2/23/2007	07020741	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
73005	WL	2/23/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
73005	WL	2/23/2007	07020741	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		valid
73005	WL	2/23/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
73005	WL	2/23/2007	07020741	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
73005	WL	2/23/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73005	WL	2/23/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
73005	WL	2/23/2007	07020741	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
73005	WL	2/23/2007	07020741	7440-61-1	Uranium	0001	40	ug/L	В	F	16		valid
73005	WL	2/23/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
73005	WL	2/23/2007	07020741	7440-66-6	Zinc	0001	6.4	ug/L	В	F	4.5		valid
73105	WL	2/21/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
73105	WL	2/21/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
73105	WL	2/21/2007	07020741	75-35-4	1,1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
73105	WL	2/21/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
73105	WL	2/21/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
73105	WL	2/21/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
73105	WL	2/21/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
73105	WL	2/21/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
73105	WL	2/21/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
73105	WL	2/21/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
73105	WL	2/21/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
73105	WL	2/21/2007	07020741	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
73105	WL	2/21/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
73105	WL	2/21/2007	07020741	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
73105	WL	2/21/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		valid
73105	WL	2/21/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
73105	WL	2/21/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73105	WL	2/21/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
73105	WL	2/21/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
73105	WL	2/21/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
73105	WL	2/21/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
73105	WL	2/21/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	U	F	0.32		valid
73105	WL	2/21/2007	07020741	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
73105	WL	2/21/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
73105	WL	2/21/2007	07020741	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
73105	WL	2/21/2007	07020741	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
73105	WL	2/21/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		valid
73105	WL	2/21/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73105	WL	2/21/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
73105	WL	2/21/2007	07020741	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
73105	WL	2/21/2007	07020741	7440-61-1	Uranium	0001	46	ug/L	В	F	16		valid
73105	WL	2/21/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
73105	WL	2/21/2007	07020741	7440-66-6	Zinc	0001	8.5	ug/L	В	F	4.5		valid
73205	WL	2/21/2007	07020741	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION	UNCER-	DATA VALIDATION QUALIFIERS
73205	WL	2/21/2007	07020741	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
73205	WL	2/21/2007	07020741	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
73205	WL	2/21/2007	07020741	75-35-4	1,1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
73205	WL	2/21/2007	07020741	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
73205	WL	2/21/2007	07020741	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
73205	WL	2/21/2007	07020741	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
73205	WL	2/21/2007	07020741	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
73205	WL	2/21/2007	07020741	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
73205	WL	2/21/2007	07020741	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
73205	WL	2/21/2007	07020741	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
73205	WL	2/21/2007	07020741	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
73205	WL	2/21/2007	07020741	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
73205	WL	2/21/2007	07020741	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
73205	WL	2/21/2007	07020741	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
73205	WL	2/21/2007	07020741	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		valid
73205	WL	2/21/2007	07020741	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
73205	WL	2/21/2007	07020741	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73205	WL	2/21/2007	07020741	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
73205	WL	2/21/2007	07020741	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
73205	WL	2/21/2007	07020741	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
73205	WL	2/21/2007	07020741	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
73205	WL	2/21/2007	07020741	75-09-2	Methylene chloride	N001	0.32	ug/L	U	F	0.32		valid
73205	WL	2/21/2007	07020741	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
73205	WL	2/21/2007	07020741	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
73205	WL	2/21/2007	07020741	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
73205	WL	2/21/2007	07020741	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
73205	WL	2/21/2007	07020741	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		valid
73205	WL	2/21/2007	07020741	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
73205	WL	2/21/2007	07020741	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
73205	WL	2/21/2007	07020741	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
73205	WL	2/21/2007	07020741	7440-61-1	Uranium	0001	110	ug/L		F	16		valid
73205	WL	2/21/2007	07020741	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
73205	WL	2/21/2007	07020741	7440-66-6	Zinc	0001	7.6	ug/L	В	F	4.5		valid
80005	WL	3/5/2007	07030756	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		J
80005	WL	3/5/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
80005	WL	3/5/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
80005	WL	3/5/2007	07030756	75-35-4	1,1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
80005	WL	3/5/2007	07030756	95-94-3	1,2,4,5-Tetrachlorobenzene	N001	2	ug/L	U	F	2		valid
80005	WL	3/5/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
80005	WL	3/5/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
80005	WL	3/5/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
80005	WL	3/5/2007	07030756	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
80005	WL	3/5/2007	07030756	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
80005	WL	3/5/2007	07030756	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
80005	WL	3/5/2007	07030756	122-66-7	1,2-Diphenylhydrazine	N001	0.64	ug/L	U	F	0.64		valid
80005	WL	3/5/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
80005	WL	3/5/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
80005	WL	3/5/2007	07030756	105-67-9	2, 4-Dimethylphenol	N001	0.57	ug/L	U	F	0.57		valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
80005	WL	3/5/2007	07030756	95-95-4	2,4,5-Trichlorophenol	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	88-06-2	2,4,6-Trichlorophenol	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	120-83-2	2,4-Dichlorophenol	N001	1.3	ug/L	U	F	1.3		valid
80005	WL	3/5/2007	07030756	51-28-5	2,4-Dinitrophenol	N001	20	ug/L	U	F	20		valid
80005	WL	3/5/2007	07030756	121-14-2	2,4-Dinitrotoluene	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	606-20-2	2,6-Dinitrotoluene	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	91-58-7	2-Chloronaphthalene	N001	1.7	ug/L	U	F	1.7		valid
80005	WL	3/5/2007	07030756	95-57-8	2-Chlorophenol	N001	0.38	ug/L	U	F	0.38		valid
80005	WL	3/5/2007	07030756	91-94-1	3,3'-Dichlorobenzidine	N001	2	ug/L	U	F	2		valid
80005	WL	3/5/2007	07030756	534-52-1	4,6-Dinitro-2-methyl phenol	N001	20	ug/L	U	F	20		valid
80005	WL	3/5/2007	07030756	59-50-7	4-Chloro-3-methylphenol	N001	5	ug/L	U	F	5		J
80005	WL	3/5/2007	07030756	100-02-7	4-Nitrophenol	N001	1.7	ug/L	U	F	1.7		valid
80005	WL	3/5/2007	07030756	83-32-9	Acenaphthene	N001	1.7	ug/L	U	F	1.7		J
80005	WL	3/5/2007	07030756	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
80005	WL	3/5/2007	07030756	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
80005	WL	3/5/2007	07030756	120-12-7	Anthracene	N001	1.9	ug/L	U	F	1.9		J
80005	WL	3/5/2007	07030756	56-55-3	Benz(a)anthracene	N001	1.7	ug/L	U	F	1.7		valid
80005	WL	3/5/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
80005	WL	3/5/2007	07030756	92-87-5	Benzidine		50	ug/L	U	F	50		valid
80005	WL	3/5/2007	07030756	50-32-8	Benzo(a)pyrene	N001	1.3	ug/L	U	F	1.3		valid
80005	WL	3/5/2007	07030756	205-99-2	Benzo(b)fluoranthene	N001	0.39	ug/L	U	F	0.39		valid
80005	WL	3/5/2007	07030756	191-24-2	Benzo(g,h,i)Perylene	N001	1	ug/L	U	F	1		valid
80005	WL	3/5/2007	07030756	207-08-9	Benzo(k)fluoranthene	N001	0.46	ug/L	II	F	0.46		valid
80005	WL	3/5/2007	07030756	111-44-4	Bis(2-chloroethyl) ether	N001	3.9	ug/L	11	F	3.9		valid
80005	WL	3/5/2007	07030756	108-60-1	Bis(2-chloroisopropyl) ether	N001	0.43	ug/L	II	F	0.43		valid
80005	WL	3/5/2007	07030756	117-81-7	Bis(2-ethylhexyl) phthalate	_	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	11	F	0.17		valid
80005	WL	3/5/2007	07030756	75-25-2	Bromoform		0.17	ug/L	U	F	0.19		valid
80005	WL	3/5/2007	07030756	74-83-9	Bromomethane	N001	0.13	ug/L	11	F	0.21		valid
80005	WL	3/5/2007	07030756	85-68-7	Butyl benzyl phthalate	N001	5	ug/L	11	F	5		valid
80005	WL	3/5/2007	07030756	7440-43-9	Cadmium	0001	0.52	ug/L	B	F	0.45		valid
80005	WL	3/5/2007	07030756	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	11	-	0.19		I
80005	WL	3/5/2007	07030756	108-90-7	Chlorobenzene		0.19	ug/L	11	F	0.19		valid
80005	WL	3/5/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	11	-	0.17		valid
80005	WL	3/5/2007	07030756	67-66-3	Chloroform	N001	0.17	ug/L	11	-	0.16		valid
80005	WL	3/5/2007	07030756	74-87-3	Chloromethane	N001	0.10	ug/L	11	-	0.10		valid
80005	WL	3/5/2007	07030756	218-01-9	Chrysene	N001	1	ug/L ug/L	11		1.3		valid
80005	WL	3/5/2007	07030756	156-59-2	cis-1,2-Dichloroethene		0.15	ug/L	11	<u>'</u>	0.15		valid
80005	WL	3/5/2007	07030756	7440-50-8		0001	4.5	ug/L ug/L	11	Г	4.5		valid
80005	WL	3/5/2007	07030756	53-70-3	Copper Dibenz(a,h)anthracene	N001	1.4	ug/L ug/L	IJ		1.4		valid
80005	WL	3/5/2007	07030756	84-66-2		N001	1.4		U	_			valid
	WL				Diethyl phthalate		5	ug/L	11	r	5		
80005	WL	3/5/2007 3/5/2007	07030756	131-11-3	Dimethyl phthalate	N001	5	ug/L	11	 -	5		valid
80005			07030756	84-74-2	Di-n-butyl phthalate	N001	ن د	ug/L	U	r	ວ E		valid
80005 80005	WL WL	3/5/2007	07030756	206-44-0	Fluoranthene	N001 N001	5	ug/L	U II	Ir Ie	1		valid valid
	WL	3/5/2007	07030756	86-73-7	Fluorene	_		ug/L	11	li.	2.1		
80005		3/5/2007	07030756	118-74-1	Hexachlorobenzene	N001	2.1	ug/L	U	F			valid
80005	WL	3/5/2007	07030756	87-68-3	Hexachlorobutadiene		0.12	ug/L	U	r	0.12		valid
80005	WL	3/5/2007	07030756	77-47-4	Hexachlorocyclopentadiene	N001	1.5	ug/L	U	r	1.5		valid
80005	WL	3/5/2007	07030756	67-72-1	Hexachloroethane	N001	0.46	ug/L	U	r	0.46		valid
80005	WL	3/5/2007	07030756	193-39-5	Indeno(1,2,3-cd)pyrene	N001	1.5	ug/L	U	F	1.5		valid
80005	WL	3/5/2007	07030756	78-59-1	Isophorone	N001	1.5	ug/L	U	F	1.5		valid
80005	WL	3/5/2007	07030756	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
80005	WL	3/5/2007	07030756	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	JF_	0.34		valid
80005	WL	3/5/2007	07030756	75-09-2	Methylene chloride	N001	0.39	ug/L	JB	JF.	0.32		U
80005	WL	3/5/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
80005	WL	3/5/2007	07030756	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
80005	WL	3/5/2007	07030756	98-95-3	Nitrobenzene	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	924-16-3	N-Nitrosodibutylamine	N001	2	ug/L	U	F	2		valid

	1		LAB REQUISITION	<u> </u>	T	T	1	1	LAB	SAMDLE	DETECTION	UNCER-	DATA VALIDATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
80005	WL	3/5/2007	07030756	55-18-5	N-Nitrosodiethylamine	N001	1.1	ug/L	U	F	1.1		valid
80005	WL	3/5/2007	07030756	62-75-9	N-Nitrosodimethylamine	N001	1.6	ug/L	U	F	1.6		valid
80005	WL	3/5/2007	07030756	621-64-7	N-Nitrosodi-n-propylamine	N001	5	ug/L	U	F	5		valid
80005	WL	3/5/2007	07030756	86-30-6	N-Nitrosodiphenylamine	N001	0.44	ug/L	U	F	0.44		valid
80005	WL	3/5/2007	07030756	930-55-2	N-Nitrosopyrrolidine	N001	0.8	ug/L	U	F	0.8		valid
80005	WL	3/5/2007	07030756	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
80005	WL	3/5/2007	07030756	56-38-2	Parathion, ethyl	N001	2	ug/L	U	F	2		valid
80005	WL	3/5/2007	07030756	608-93-5	Pentachlorobenzene	N001	2	ug/L	U	F	2		valid
80005	WL	3/5/2007	07030756	87-86-5	Pentachlorophenol	N001	20	ug/L	U	F	20		valid
80005	WL	3/5/2007	07030756	108-95-2	Phenol	N001	1.4	ug/L	U	F	1.4		valid
80005	WL	3/5/2007	07030756	129-00-0	Pyrene	N001	0.37	ug/L	U	F	0.37		J
80005	WL	3/5/2007	07030756	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
80005	WL	3/5/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
80005	WL	3/5/2007	07030756	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		J
80005	WL	3/5/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
80005	WL	3/5/2007	07030756	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
80005	WL	3/5/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
80005	WL	3/5/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
80005	WL	3/5/2007	07030756	79-01-6	Trichloroethene	N001	0.16	ug/L	J	F	0.16		valid
80005	WL	3/5/2007	07030756	7440-61-1	Uranium	0001	16	ug/L	U	F	16		valid
80005	WL	3/5/2007	07030756	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
80005	WL	3/5/2007	07030756	7440-66-6	Zinc	0001	6.1	ug/L	В	F	4.5		H
80105	WL	3/6/2007	07030756	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	II	F	0.16		ı
80105	WL	3/6/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.10	ug/L	11	F	0.2		valid
80105	WL	3/6/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	11	-	0.32		valid
80105	WL	3/6/2007	07030756	75-35-4	1,1-Dichloroethene	N001	0.32	ug/L	U	г -	0.32		valid
80105	WL	3/6/2007	07030756	95-94-3	1,2,4,5-Tetrachlorobenzene	N001	0.14	ug/L ug/L	II	F	0.14		R
80105	WL	3/6/2007	07030756	120-82-1	1,2,4,5-Tetrachiorobenzene	N001	0.32	ug/L ug/L	U	г -	0.32		valid
80105	WL	3/6/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L ug/L	U	г -	1.5		valid
80105	WL	3/6/2007				N001	-		U U	F	0.18		valid
	WL	3/6/2007	07030756 07030756	106-93-4 95-50-1	1,2-Dibromoethane	N001	0.18 0.13	ug/L	U	r			valid
80105					1,2-Dichlorobenzene	N001	0.13	ug/L	U	r -	0.13		
80105	WL WL	3/6/2007	07030756	107-06-2	1,2-Dichloroethane	N001		ug/L	II	F	0.13		valid valid
80105		3/6/2007	07030756	78-87-5	1,2-Dichloropropane		0.13	ug/L	U	r -	0.13		valid
80105	WL	3/6/2007	07030756	122-66-7	1,2-Diphenylhydrazine	N001	0.64	ug/L	U	-	0.64		IR
80105	WL	3/6/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
80105	WL	3/6/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
80105	WL	3/6/2007	07030756	105-67-9	2, 4-Dimethylphenol	N001	0.57	ug/L	U	F	0.57		R
80105	WL	3/6/2007	07030756	95-95-4	2,4,5-Trichlorophenol	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	88-06-2	2,4,6-Trichlorophenol	N001	5	ug/L	U	F	5		R
80105		3/6/2007	07030756	120-83-2	2,4-Dichlorophenol	N001	1.3	ug/L	U	F	1.3		R
80105	WL	3/6/2007	07030756	51-28-5	2,4-Dinitrophenol	N001	20	ug/L	U	F	20		R
80105	WL	3/6/2007	07030756	121-14-2	2,4-Dinitrotoluene	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	606-20-2	2,6-Dinitrotoluene	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	91-58-7	2-Chloronaphthalene	N001	1.7	ug/L	U	F	1.7		R
80105	WL	3/6/2007	07030756	95-57-8	2-Chlorophenol	N001	0.38	ug/L	U	F	0.38		R
80105	WL	3/6/2007	07030756	91-94-1	3,3'-Dichlorobenzidine	N001	2	ug/L	U	F	2		R
80105	WL	3/6/2007	07030756	534-52-1	4,6-Dinitro-2-methyl phenol	N001	20	ug/L	U	F	20		R
80105	WL	3/6/2007	07030756	59-50-7	4-Chloro-3-methylphenol	N001	5	ug/L	U	F	5		RJ
80105	WL	3/6/2007	07030756	100-02-7	4-Nitrophenol	N001	1.7	ug/L	U	F	1.7		R
80105	WL	3/6/2007	07030756	83-32-9	Acenaphthene	N001	1.7	ug/L	U	F	1.7		RJ
80105	WL	3/6/2007	07030756	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
80105	WL	3/6/2007	07030756	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
80105	WL	3/6/2007	07030756	120-12-7	Anthracene	N001	1.9	ug/L	U	F	1.9		RJ
80105	WL	3/6/2007	07030756	56-55-3	Benz(a)anthracene	N001	1.7	ug/L	U	F	1.7		R
80105	WL	3/6/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
80105	WL	3/6/2007	07030756	92-87-5	Benzidine	N001	50	ug/L	U	F	50		R
80105	WL	3/6/2007	07030756	50-32-8	Benzo(a)pyrene	N001	1.3	ug/L	U	F	1.3		R
80105	WL	3/6/2007	07030756	205-99-2	Benzo(b)fluoranthene	N001	0.39	ug/L	U	F	0.39		R

	1	1	LAB REQUISITION	1	1	1	1	1	LAB	CAMDLE	DETECTION	UNCER-	DATA VALIDATION
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
80105	WL	3/6/2007	07030756	191-24-2	Benzo(g,h,i)Perylene	N001	1	ug/L	U	F	1		R
80105	WL	3/6/2007	07030756	207-08-9	Benzo(k)fluoranthene	N001	0.46	ug/L	U	F	0.46		R
80105	WL	3/6/2007	07030756	111-44-4	Bis(2-chloroethyl) ether	N001	3.9	ug/L	U	F	3.9		R
80105	WL	3/6/2007	07030756	108-60-1	Bis(2-chloroisopropyl) ether	N001	0.43	ug/L	U	F	0.43		R
80105	WL	3/6/2007	07030756	117-81-7	Bis(2-ethylhexyl) phthalate	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
80105	WL	3/6/2007	07030756	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
80105	WL	3/6/2007	07030756	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
80105	WL	3/6/2007	07030756	85-68-7	Butyl benzyl phthalate	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	7440-43-9	Cadmium	0001	0.62	ug/L	В	F	0.45		valid
80105	WL	3/6/2007	07030756	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		J
80105	WL	3/6/2007	07030756	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
80105	WL	3/6/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
80105	WL	3/6/2007	07030756	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
80105	WL	3/6/2007	07030756	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
80105	WL	3/6/2007	07030756	218-01-9	Chrysene	N001	1	ug/L	U	F	1		R
80105	WL	3/6/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
80105	WL	3/6/2007	07030756	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
80105	WL	3/6/2007	07030756	53-70-3	Dibenz(a,h)anthracene	N001	1.4	ug/L	U	F	1.4		R
80105	WL	3/6/2007	07030756	84-66-2	Diethyl phthalate	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	131-11-3	Dimethyl phthalate	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	84-74-2	Di-n-butyl phthalate	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	206-44-0	Fluoranthene	N001	5	ug/L	II	F	5		R
80105	WL	3/6/2007	07030756	86-73-7	Fluorene	N001	1	ug/L	II	F	1		R
80105	WL	3/6/2007	07030756	118-74-1	Hexachlorobenzene	N001	2.1	ug/L	II	F	2.1		R
80105	WL	3/6/2007	07030756	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
80105	WL	3/6/2007	07030756	77-47-4	Hexachlorocyclopentadiene	N001	1.5	ug/L	II	F	1.5		R
80105	WL	3/6/2007	07030756	67-72-1	Hexachloroethane	N001	0.46	ug/L	U	F	0.46		R
80105	WL	3/6/2007	07030756	193-39-5	Indeno(1,2,3-cd)pyrene	N001	1.5	ug/L	II	F.	1.5		R
80105	WL	3/6/2007	07030756	78-59-1	Isophorone	N001	1.5	ug/L	U	F.	1.5		R
80105	WL	3/6/2007	07030756	7439-92-1	Lead	0001	2.6	ug/L	II	F.	2.6		valid
80105	WL	3/6/2007	07030756	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	II	F.	0.34		valid
80105	WL	3/6/2007	07030756	75-09-2	Methylene chloride	N001	0.37	ug/L	JB	F	0.32		II
80105	WL	3/6/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	11	F	0.22		valid
80105	WL	3/6/2007	07030756	7440-02-0	Nickel	0001	7.8	ug/L	U	F	7.8		valid
80105	WL	3/6/2007	07030756	98-95-3	Nitrobenzene	N001	5	ug/L	11	F	5		R
80105	WL	3/6/2007	07030756	924-16-3	N-Nitrosodibutylamine	N001	2	ug/L	11	F	2		R
80105	WL	3/6/2007	07030756	55-18-5	N-Nitrosodiethylamine	N001	1.1	ug/L	II	F.	1.1		R
80105	WL	3/6/2007	07030756	62-75-9	N-Nitrosodimethylamine	N001	1.6	ug/L	U	F	1.6		R
80105		3/6/2007	07030756	621-64-7	N-Nitrosodi-n-propylamine	N001	5	ug/L	U	F	5		R
80105	WL	3/6/2007	07030756	86-30-6	N-Nitrosodiphenylamine	N001	0.44	ug/L	lii	F.	0.44		R
80105	WL	3/6/2007	07030756	930-55-2	N-Nitrosogyrrolidine	N001	0.8	ug/L	U	F.	0.8		R
80105	WL	3/6/2007	07030756	95-47-6	o-Xylene	N001	0.19	ug/L	U	F.	0.19		valid
80105	WL	3/6/2007	07030756	56-38-2	Parathion, ethyl	N001	2	ug/L	U	F	2		R
80105	WL	3/6/2007	07030756	608-93-5	Pentachlorobenzene	N001	2	ug/L	U	F.	2		R
80105	WL	3/6/2007	07030756	87-86-5	Pentachlorophenol	N001	20	ug/L	U	F	20		R
80105	WL	3/6/2007	07030756	108-95-2	Phenol	N001	1.4	ug/L	II	F	1.4		R
80105	WL	3/6/2007	07030756	129-00-0	Pyrene	N001	0.37	ug/L	lii	F.	0.37		RJ
80105	WL	3/6/2007	07030756	7440-22-4	Silver	0001	2.8	ug/L ug/L	U	F	2.8		valid
80105	WL	3/6/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	lii	F.	0.17		valid
80105	WL	3/6/2007	07030756	127-18-4	Tetrachloroethene	N001	0.17	ug/L	ii	F	0.17		.I
80105	WL	3/6/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	11	r F	0.17		valid
80105	WL	3/6/2007	07030756	100-88-3	Total Xylene	N001	0.17	ug/L ug/L	U II	F	0.16		valid
80105	WL	3/6/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L ug/L	U	F	0.15		valid
80105	WL	3/6/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L ug/L	ii	F	0.19		valid
80105	WL	3/6/2007	07030756	79-01-6	Trichloroethene	N001	0.19	ug/L ug/L	U II	r F	0.19		valid
80105	WL	3/6/2007	07030756	7440-61-1	Uranium	0001	32	ug/L ug/L	D	-	16		valid
80105 80105	WL	3/6/2007	07030756	7440-61-1 75-01-4		N001	0.17		n R		0.17	 	valid
00100	VVL	3/0/2007	07030730	10-01-4	Vinyl chloride	INUUT	0.17	ug/L	U	Г	U. 1 <i>1</i>	l	valiu

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
80105	WL	3/6/2007	07030756	7440-66-6	Zinc	0001	8.3	ug/L	B	F	4.5	IAIIIII	U
80205	WL	3/6/2007	07030756	71-55-6	1,1,1-Trichloroethane	N001	0.16	ua/L	U	F.	0.16		J
80205	WL	3/6/2007	07030756	71-55-6	1,1,1-Trichloroethane	N002	0.16	ug/L	U	D.	0.16		J
80205	WL	3/6/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
80205	WL	3/6/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N002	0.2	ug/L	U	D	0.2		valid
80205	WL	3/6/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
80205	WL	3/6/2007	07030756	79-00-5	1,1,2-Trichloroethane	N002	0.32	Ü	U	D	0.32		valid
80205	WL	3/6/2007	07030756	75-35-4	1.1-Dichloroethene	N001	0.14	ug/L	IJ	F	0.14		valid
80205	WL	3/6/2007	07030756	75-35-4	1.1-Dichloroethene	N002	0.14	ug/L	П	D	0.14		valid
80205	WL	3/6/2007	07030756	95-94-3	1,2,4,5-Tetrachlorobenzene	N001	2	ug/L	IJ	F	2		valid
80205	WL	3/6/2007	07030756	95-94-3	1,2,4,5-Tetrachlorobenzene	N002	2	ug/L	П	D	2		valid
80205	WL	3/6/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	IJ	F	0.32		valid
80205	WL	3/6/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N002	0.32	ug/L	IJ	D.	0.32		valid
80205	WL	3/6/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	_	П	F	1.5		valid
80205	WL	3/6/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N002	1.5	ug/L	П	D.	1.5		valid
80205	WL	3/6/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	II	F	0.18		valid
80205	WL	3/6/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	II	D	0.18		valid
80205	WL	3/6/2007	07030756	95-50-1	1,2-Dichlorobenzene	N002	0.13	ug/L	11	F	0.13		valid
80205	WL	3/6/2007	07030756	95-50-1	1,2-Dichlorobenzene	N001	0.13		U	D.	0.13		valid
80205	WL	3/6/2007	07030756	107-06-2	1,2-Dichloroethane	N002 N001	0.13	_	II	5	0.13		valid
	WL			107-06-2	,	N001	0.13	Ŭ	U	D D	0.13		
80205		3/6/2007	07030756		1,2-Dichloroethane			. 5	II	D F			valid
80205	WL	3/6/2007	07030756	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
80205	WL	3/6/2007	07030756	78-87-5	1,2-Dichloropropane	N002	0.13	ug/ L	U	ד	0.13		valid
80205	WL	3/6/2007	07030756	122-66-7	1,2-Diphenylhydrazine	N001	0.64	ug/L	U	F	0.64		valid
80205	WL	3/6/2007	07030756	122-66-7	1,2-Diphenylhydrazine	N002	0.64	ug/L	U	D	0.64		valid
80205	WL	3/6/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	3	U	F	0.16		valid
80205	WL	3/6/2007	07030756	541-73-1	1,3-Dichlorobenzene	N002	0.16	ug/L	U	D	0.16		valid
80205	WL	3/6/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/ =	U	F	0.16		valid
80205	WL	3/6/2007	07030756	106-46-7	1,4-Dichlorobenzene	N002	0.16	ug/L	U	<u>ل</u>	0.16		valid
80205	WL	3/6/2007	07030756	105-67-9	2, 4-Dimethylphenol	N001	0.57	3	U	F	0.57		valid
80205	WL	3/6/2007	07030756	105-67-9	2, 4-Dimethylphenol	N002	0.57	ug/L	U	D -	0.57		valid
80205	WL	3/6/2007	07030756	95-95-4	2,4,5-Trichlorophenol	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	95-95-4	2,4,5-Trichlorophenol	N002	5	3	U	D -	5		valid
80205	WL	3/6/2007	07030756	88-06-2	2,4,6-Trichlorophenol	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	88-06-2	2,4,6-Trichlorophenol	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	120-83-2	2,4-Dichlorophenol	N001	1.3	ug/L	U	F	1.3		valid
80205	WL	3/6/2007	07030756	120-83-2	2,4-Dichlorophenol	N002	1.3	ug/L	U	D	1.3		valid
80205	WL	3/6/2007	07030756	51-28-5	2,4-Dinitrophenol	N001	20	ug/L	U	F	20		valid
80205	WL	3/6/2007	07030756	51-28-5	2,4-Dinitrophenol	N002	20	ug/L	U	D	20		valid
80205	WL	3/6/2007	07030756	121-14-2	2,4-Dinitrotoluene	N001	5		U	F	5		valid
80205	WL	3/6/2007	07030756	121-14-2	2,4-Dinitrotoluene	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	606-20-2	2,6-Dinitrotoluene	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	606-20-2	2,6-Dinitrotoluene	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	91-58-7	2-Chloronaphthalene	N001	1.7	ug/L	U	F	1.7		valid
80205	WL	3/6/2007	07030756	91-58-7	2-Chloronaphthalene	N002	1.7	3	U	D	1.7		valid
80205	WL	3/6/2007	07030756	95-57-8	2-Chlorophenol	N001	0.38	3	U	F	0.38		valid
80205	WL	3/6/2007	07030756	95-57-8	2-Chlorophenol	N002	0.38	ug/ L	U	D	0.38		valid
80205	WL	3/6/2007	07030756	91-94-1	3,3'-Dichlorobenzidine	N001	2	ug/L	U	F	2		valid
80205	WL	3/6/2007	07030756	91-94-1	3,3'-Dichlorobenzidine	N002	2	ug/L	U	D	2		valid
80205	WL	3/6/2007	07030756	534-52-1	4,6-Dinitro-2-methyl phenol	N001	20	ug/L	U	F	20		valid
80205	WL	3/6/2007	07030756	534-52-1	4,6-Dinitro-2-methyl phenol	N002	20	ug/L	U	D	20		valid
80205	WL	3/6/2007	07030756	59-50-7	4-Chloro-3-methylphenol	N001	5	ug/L	U	F	5		J
80205	WL	3/6/2007	07030756	59-50-7	4-Chloro-3-methylphenol	N002	5	ug/L	U	D	5		J
80205	WL	3/6/2007	07030756	100-02-7	4-Nitrophenol	N001	1.7	ug/L	U	F	1.7		valid
80205	WL	3/6/2007	07030756	100-02-7	4-Nitrophenol	N002	1.7	ug/L	U	D	1.7		valid
80205	WL	3/6/2007	07030756	83-32-9	Acenaphthene	N001	1.7	ug/L	U	F	1.7		J
80205	WL	3/6/2007	07030756	83-32-9	Acenaphthene	N002	1.7	ug/L	U	D	1.7		J
80205	WL	3/6/2007	07030756	107-02-8	Acrolein	N001	2.8		U	F	2.8		valid

	1	1	LAB REQUISITION	1	1	1	1	1	LAB	CAMDIE	DETECTION	UNCER-	DATA VALIDATION
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
80205	WL	3/6/2007	07030756	107-02-8	Acrolein	N002	2.8	ug/L	U	D	2.8		valid
80205	WL	3/6/2007	07030756	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
80205	WL	3/6/2007	07030756	107-13-1	Acrylonitrile	N002	1.4	ug/L	U	D	1.4		valid
80205	WL	3/6/2007	07030756	120-12-7	Anthracene	N001	1.9	ug/L	U	F	1.9		J
80205	WL	3/6/2007	07030756	120-12-7	Anthracene	N002	1.9	ug/L	U	D	1.9		J
80205	WL	3/6/2007	07030756	56-55-3	Benz(a)anthracene	N001	1.7	ug/L	U	F	1.7		valid
80205	WL	3/6/2007	07030756	56-55-3	Benz(a)anthracene	N002	1.7	ug/L	U	D	1.7		valid
80205	WL	3/6/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
80205	WL	3/6/2007	07030756	71-43-2	Benzene	N002	0.16	ug/L	U	D	0.16		valid
80205	WL	3/6/2007	07030756	92-87-5	Benzidine	N001	50	ug/L	U	F	50		valid
80205	WL	3/6/2007	07030756	92-87-5	Benzidine	N002	50	ug/L	U	D	50		valid
80205	WL	3/6/2007	07030756	50-32-8	Benzo(a)pyrene	N001	1.3	ug/L	U	F	1.3		valid
80205	WL	3/6/2007	07030756	50-32-8	Benzo(a)pyrene	N002	1.3	ug/L	U	D	1.3		valid
80205	WL	3/6/2007	07030756	205-99-2	Benzo(b)fluoranthene	N001	0.39	ug/L	U	F	0.39		valid
80205	WL	3/6/2007	07030756	205-99-2	Benzo(b)fluoranthene	N002	0.39	ug/L	U	D	0.39		valid
80205	WL	3/6/2007	07030756	191-24-2	Benzo(g,h,i)Perylene	N001	1	ug/L	U	F	1		valid
80205	WL	3/6/2007	07030756	191-24-2	Benzo(g,h,i)Perylene	N002	1	ug/L	U	D	1		valid
80205	WL	3/6/2007	07030756	207-08-9	Benzo(k)fluoranthene	N001	0.46	ug/L	U	F	0.46		valid
80205	WL	3/6/2007	07030756	207-08-9	Benzo(k)fluoranthene	N002	0.46	ug/L	U	D	0.46		valid
80205	WL	3/6/2007	07030756	111-44-4	Bis(2-chloroethyl) ether	N001	3.9	ug/L	U	F	3.9		valid
80205	WL	3/6/2007	07030756	111-44-4	Bis(2-chloroethyl) ether	N002	3.9	ug/L	U	D	3.9		valid
80205	WL	3/6/2007	07030756	108-60-1	Bis(2-chloroisopropyl) ether	N001	0.43	ug/L	U	F	0.43		valid
80205	WL	3/6/2007	07030756	108-60-1	Bis(2-chloroisopropyl) ether	N002	0.43	ug/L	U	D	0.43		valid
80205	WL	3/6/2007	07030756	117-81-7	Bis(2-ethylhexyl) phthalate	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	117-81-7	Bis(2-ethylhexyl) phthalate	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	75-27-4	Bromodichloromethane	N002	0.17	ug/L	U	D	0.17		valid
80205	WL	3/6/2007	07030756	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
80205	WL	3/6/2007	07030756	75-25-2	Bromoform	N002	0.19	ug/L	U	D	0.19		valid
80205	WL	3/6/2007	07030756	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
80205	WL	3/6/2007	07030756	74-83-9	Bromomethane	N002	0.21	ug/L	U	D	0.21		valid
80205	WL	3/6/2007	07030756	85-68-7	Butyl benzyl phthalate	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	85-68-7	Butyl benzyl phthalate	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	7440-43-9	Cadmium	0001	0.45	ug/L	U	F	0.45		valid
80205	WL	3/6/2007	07030756	7440-43-9	Cadmium	0002	0.45	ug/L	U	D	0.45		valid
80205	WL	3/6/2007	07030756	56-23-5	Carbon tetrachloride	N001	0.19	ug/L	U	F	0.19		J
80205	WL	3/6/2007	07030756	56-23-5	Carbon tetrachloride	N002	0.19	ug/L	U	D	0.19		J
80205	WL	3/6/2007	07030756	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	108-90-7	Chlorobenzene	N002	0.17	ug/L	U	D	0.17		valid
80205		3/6/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	124-48-1	Chlorodibromomethane	N002	0.17	ug/L	U	D	0.17		valid
80205	WL	3/6/2007	07030756	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
80205	WL	3/6/2007	07030756	67-66-3	Chloroform	N002	0.16	ug/L	U	D	0.16		valid
80205	WL	3/6/2007	07030756	74-87-3	Chloromethane	N001	0.3	ug/L	U	F D	0.3		valid valid
80205	WL	3/6/2007	07030756	74-87-3	Chloromethane	N002	0.3	ug/L	U	D -	0.3		
80205	WL	3/6/2007	07030756	218-01-9	Chrysene	N001	1	ug/L	U	F	1		valid
80205	WL	3/6/2007	07030756	218-01-9	Chrysene	N002	0.45	ug/L	U	D	0.45		valid
80205	WL	3/6/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	r D	0.15	 	valid
80205	WL	3/6/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N002	0.15	ug/L	U	Γ	0.15		valid
80205	WL	3/6/2007	07030756	7440-50-8	Copper	0001 0002	4.5	ug/L	U	r D	4.5 4.5		valid valid
80205	WL	3/6/2007	07030756	7440-50-8	Copper		4.5	ug/L	U	ח			
80205	WL	3/6/2007	07030756	53-70-3	Dibenz(a,h)anthracene	N001	1.4	ug/L	U	<u>r</u>	1.4		valid
80205	WL	3/6/2007	07030756	53-70-3	Dibenz(a,h)anthracene	N002	1.4	ug/L	U	ח	1.4		valid
80205	WL	3/6/2007	07030756	84-66-2	Diethyl phthalate	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	84-66-2	Diethyl phthalate	N002	5	ug/L	U	ח	5		valid
80205	WL WL	3/6/2007	07030756	131-11-3	Dimethyl phthalate	N001	5	ug/L	U	F	5		valid
80205		3/6/2007	07030756	131-11-3	Dimethyl phthalate	N002	5	ug/L	11	Γ	5		valid valid
80205	WL	3/6/2007	07030756	84-74-2	Di-n-butyl phthalate	N001	ပ	ug/L	U	ļF	5	l	vailü

<u></u>		ı	L. A.B. B.E.G. WOLTHOU	ı			1	1			Lacronion		I DATA WALIBATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
80205	WL	3/6/2007	07030756	84-74-2	Di-n-butyl phthalate	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	206-44-0	Fluoranthene	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	206-44-0	Fluoranthene	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	86-73-7	Fluorene	N001	1	ug/L	U	F	1		valid
80205	WL	3/6/2007	07030756	86-73-7	Fluorene	N002	1	ug/L	U	D	1		valid
80205	WL	3/6/2007	07030756	118-74-1	Hexachlorobenzene	N001	2.1	ug/L	U	F	2.1		valid
80205	WL	3/6/2007	07030756	118-74-1	Hexachlorobenzene	N002	2.1	ug/L	U	D	2.1		valid
80205	WL	3/6/2007	07030756	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
80205	WL	3/6/2007	07030756	87-68-3	Hexachlorobutadiene	N002	0.12	ug/L	U	D	0.12		valid
80205	WL	3/6/2007	07030756	77-47-4	Hexachlorocyclopentadiene	N001	1.5	ug/L	U	F	1.5		valid
80205	WL	3/6/2007	07030756	77-47-4	Hexachlorocyclopentadiene	N002	1.5	ug/L	U	D	1.5		valid
80205	WL	3/6/2007	07030756	67-72-1	Hexachloroethane	N001	0.46	ug/L	U	F	0.46		valid
80205	WL	3/6/2007	07030756	67-72-1	Hexachloroethane	N002	0.46	ug/L	U	D	0.46		valid
80205	WL	3/6/2007	07030756	193-39-5	Indeno(1,2,3-cd)pyrene	N001	1.5	ug/L	U	F	1.5		valid
80205	WL	3/6/2007	07030756	193-39-5	Indeno(1,2,3-cd)pyrene	N002	1.5	ug/L	U	D	1.5		valid
80205	WL	3/6/2007	07030756	78-59-1	Isophorone	N001	1.5	ug/L	U	F	1.5		valid
80205	WL	3/6/2007	07030756	78-59-1	Isophorone	N002	1.5	ug/L	U	D	1.5		valid
80205	WL	3/6/2007	07030756	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
80205	WL	3/6/2007	07030756	7439-92-1	Lead	0002	2.6	ug/L	U	D.	2.6		valid
80205	WL	3/6/2007	07030756	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
80205	WL	3/6/2007	07030756	M&P XYLENE	m,p-Xylene	N002	0.34	ug/L	U	D	0.34		valid
80205	WL	3/6/2007	07030756	75-09-2	Methylene chloride	N001	0.36	ug/L	JB	F	0.32		II
80205	WL	3/6/2007	07030756	75-09-2	Methylene chloride	N002	0.43	ug/L	JB	D	0.32		II
80205	WL	3/6/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	11	F	0.22		valid
80205	WL	3/6/2007	07030756	91-20-3	Naphthalene	N002	0.22	ug/L	11	n D	0.22		valid
80205	WL	3/6/2007	07030756	7440-02-0	Nickel	0001	7.8	ug/L ug/L	U	D	7.8		valid
80205	WL	3/6/2007	07030756	7440-02-0	Nickel	0001	7.8	ug/L ug/L	11	Г D	7.8		valid
80205	WL	3/6/2007	07030756	98-95-3	Nitrobenzene	N001	5	ug/L ug/L	IJ	D	5		valid
80205	WL	3/6/2007	07030756	98-95-3	Nitrobenzene	N001	5	ug/L ug/L	11	Г	5		valid
80205	WL	3/6/2007		924-16-3		N002	2		U	<u>г</u>	3		valid
80205	WL	3/6/2007	07030756 07030756	924-16-3	N-Nitrosodibutylamine	N001	2	ug/L	U	D D	2		
					N-Nitrosodibutylamine	N002	4.4	ug/L	U	υ -	1.1		valid
80205	WL WL	3/6/2007	07030756	55-18-5	N-Nitrosodiethylamine	N001 N002	1.1	ug/L	U H	D.	1		valid
80205		3/6/2007	07030756	55-18-5	N-Nitrosodiethylamine		1.1	ug/L	U	υ -	1.1		valid
80205	WL	3/6/2007	07030756	62-75-9	N-Nitrosodimethylamine	N001	1.6	ug/L	U	F	1.6		valid
80205	WL	3/6/2007	07030756	62-75-9	N-Nitrosodimethylamine	N002	1.6	ug/L	U	D	1.6		valid
80205	WL	3/6/2007	07030756	621-64-7	N-Nitrosodi-n-propylamine	N001	5	ug/L	U	F	5		valid
80205	WL	3/6/2007	07030756	621-64-7	N-Nitrosodi-n-propylamine	N002	5	ug/L	U	D	5		valid
80205	WL	3/6/2007	07030756	86-30-6	N-Nitrosodiphenylamine	N001	0.44	ug/L	U	F	0.44		valid
80205	WL	3/6/2007	07030756	86-30-6	N-Nitrosodiphenylamine	N002	0.44	ug/L	U	D	0.44		valid
80205	WL	3/6/2007	07030756	930-55-2	N-Nitrosopyrrolidine	N001	0.8	ug/L	U	F	0.8		valid
80205	WL	3/6/2007	07030756	930-55-2	N-Nitrosopyrrolidine	N002	0.8	ug/L	U	D	0.8		valid
80205	WL	3/6/2007	07030756	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
80205	WL	3/6/2007	07030756	95-47-6	o-Xylene	N002	0.19	ug/L	U	ט	0.19		valid
80205	WL	3/6/2007	07030756	56-38-2	Parathion, ethyl	N001	2	ug/L	U	F	2		valid
80205	WL	3/6/2007	07030756	56-38-2	Parathion, ethyl	N002	2	ug/L	U	D	2		valid
80205	WL	3/6/2007	07030756	608-93-5	Pentachlorobenzene	N001	2	ug/L	U	F	2		valid
80205	WL	3/6/2007	07030756	608-93-5	Pentachlorobenzene	N002	2	ug/L	U	D	2		valid
80205	WL	3/6/2007	07030756	87-86-5	Pentachlorophenol	N001	20	ug/L	U	F	20		valid
80205	WL	3/6/2007	07030756	87-86-5	Pentachlorophenol	N002	20	ug/L	U	D	20		valid
80205	WL	3/6/2007	07030756	108-95-2	Phenol	N001	1.4	ug/L	U	F	1.4		valid
80205	WL	3/6/2007	07030756	108-95-2	Phenol	N002	1.4	ug/L	U	D	1.4		valid
80205	WL	3/6/2007	07030756	129-00-0	Pyrene	N001	0.37	ug/L	U	F	0.37		J
80205	WL	3/6/2007	07030756	129-00-0	Pyrene	N002	0.37	ug/L	U	D	0.37		J
80205	WL	3/6/2007	07030756	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
80205	WL	3/6/2007	07030756	7440-22-4	Silver	0002	2.8	ug/L	U	D	2.8		valid
80205	WL	3/6/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	100-42-5	Styrene	N002	0.17	ug/L	U	D	0.17		valid
80205	WL	3/6/2007	07030756	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.2		J

I	1	ı	L AD DECUIEITION	ı	1	T	1	1	LAD	CAMBLE	DETECTION	LINCED	DATA VALIDATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	TYPE	LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
80205	WL	3/6/2007	07030756	127-18-4	Tetrachloroethene	N002	0.2	ug/L	U	D	0.2		J
80205	WL	3/6/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	108-88-3	Toluene	N002	0.17	ug/L	U	D	0.17		valid
80205	WL	3/6/2007	07030756	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
80205	WL	3/6/2007	07030756	100-41-4	Total Xylene	N002	0.16	ug/L	U	D	0.16		valid
80205	WL	3/6/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
80205	WL	3/6/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N002	0.15	ug/L	U	D	0.15		valid
80205	WL	3/6/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
80205	WL	3/6/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N002	0.19	ug/L	U	D	0.19		valid
80205	WL	3/6/2007	07030756	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.16		valid
80205	WL	3/6/2007	07030756	79-01-6	Trichloroethene	N002	0.16	ug/L	U	D	0.16		valid
80205	WL	3/6/2007	07030756	7440-61-1	Uranium	0001	63	ug/L		F	16		valid
80205	WL	3/6/2007	07030756	7440-61-1	Uranium	0002	71	ug/L		D	16		valid
80205	WL	3/6/2007	07030756	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
80205	WL	3/6/2007	07030756	75-01-4	Vinyl chloride	N002	0.17	ug/L	U	D	0.17		valid
80205	WL	3/6/2007	07030756	7440-66-6	Zinc	0001	9.1	ug/L	В	F	4.5		U
80205	WL	3/6/2007	07030756	7440-66-6	Zinc	0002	7.4	ug/L	В	D	4.5		U
891WEL	WL	2/27/2007	07030756	71-55-6	1,1,1-Trichloroethane	N001	0.8	ug/L	J	F	0.16		J
891WEL	WL	2/27/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
891WEL	WL	2/27/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
891WEL	WL	2/27/2007	07030756	75-35-4	1,1-Dichloroethene	N001	16	ug/L		F	0.14		valid
891WEL	WL	2/27/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
891WEL	WL	2/27/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
891WEL	WL	2/27/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
891WEL	WL	2/27/2007	07030756	95-50-1	1,2-Dichlorobenzene	N001	0.18	ug/L	JB	F	0.13		U
891WEL	WL	2/27/2007	07030756	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
891WEL	WL	2/27/2007	07030756	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
891WEL	WL	2/27/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
891WEL	WL	2/27/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
891WEL	WL	2/27/2007	07030756	107-02-8	Acrolein	N001	2.8	ug/L	U	F	2.8		valid
891WEL	WL	2/27/2007	07030756	107-13-1	Acrylonitrile	N001	1.4	ug/L	U	F	1.4		valid
891WEL	WL	2/27/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	U	F	0.16		valid
891WEL	WL	2/27/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
891WEL	WL	2/27/2007	07030756	75-25-2	Bromoform	N001	0.19	ug/L	U	F	0.19		valid
891WEL	WL	2/27/2007	07030756	74-83-9	Bromomethane	N001	0.21	ug/L	U	F	0.21		valid
891WEL	WL	2/27/2007	07030756	56-23-5	Carbon tetrachloride	N001	2.3	ug/L		F	0.19		J
891WEL	WL	2/27/2007	07030756	108-90-7	Chlorobenzene	N001	0.17	ug/L	U	F	0.17		valid
891WEL	WL	2/27/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U	F	0.17		valid
891WEL	WL	2/27/2007	07030756	67-66-3	Chloroform	N001	2.5	ug/L		F	0.16		U
891WEL	WL	2/27/2007	07030756	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
891WEL	WL	2/27/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N001	1.8	ug/L		F	0.15		valid
891WEL	WL	2/27/2007	07030756	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
891WEL	WL	2/27/2007	07030756	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
891WEL	WL	2/27/2007	07030756	75-09-2	Methylene chloride	N001	0.52	ug/L	JB	F	0.32		U
891WEL	WL	2/27/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	U	F	0.22		valid
891WEL	WL	2/27/2007	07030756	95-47-6	o-Xylene	N001	0.19	ug/L	U	F	0.19		valid
891WEL	WL	2/27/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.17		valid
891WEL	WL	2/27/2007	07030756	127-18-4	Tetrachloroethene	N001	20	ug/L		F	0.2		J
891WEL	WL	2/27/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
891WEL	WL	2/27/2007	07030756	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
891WEL	WL	2/27/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.49	ug/L	J	F	0.15		valid
891WEL	WL	2/27/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.19		valid
891WEL	WL	2/27/2007	07030756	79-01-6	Trichloroethene	N001	130	ug/L		F	0.64		valid
891WEL	WL	2/27/2007	07030756	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
A4 POND	UN	2/12/2007	07020720	AM-241	Americium-241	N001	0.00524	pCi/L	U	F	0.0288	0.00717	valid
A4 POND	UN	2/12/2007	07020720	NH3+NH4-N	Ammonia Total as N	N001	0.01	mg/L	U	F	0.01		valid
A4 POND	UN	2/12/2007	07020720	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	7.8	mg/L		F	0.07		valid
A4 POND	UN	2/12/2007	07020720	PU-239,240	Plutonium-239, 240	N001	-0.0201	pCi/L	U	F	0.0152	0.0201	valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
A4 POND	UN	2/12/2007	07020720	RA-228	Radium-228	N001	0.256	pCi/L	U	F	0.472	0.284	valid
A4 POND	UN	2/12/2007	07020720	U-234	Uranium-234	N001	1.6	pCi/L		F	0.04	0.208	valid
A4 POND	UN	2/12/2007	07020720	U-235+236	Uranium-235/236	N001	0.101	pCi/L		F	0.0409	0.0319	J
A4 POND	UN	2/12/2007	07020720	U-238	Uranium-238	N001	1.3	pCi/L		F	0.0285	0.174	valid
A4 POND	UN	3/19/2007	07030793	57-12-5	Total Cyanide	N001	0.0024	mg/L	U	F	0.0024		J
B5 POND	SL	2/12/2007	07020720	AM-241	Americium-241	N001	0.00651	pCi/L	U	F	0.0264	0.0119	valid
B5 POND	SL	2/12/2007	07020720	NH3+NH4-N	Ammonia Total as N	N001	0.069	mg/L	J	F	0.01		valid
B5 POND	SL	2/12/2007	07020720	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	2.01	mg/L		F	0.07		valid
B5 POND	SL	2/12/2007	07020720	PU-239,240	Plutonium-239, 240	N001	0.0282	pCi/L		F	0.0153	0.0169	J
B5 POND	SL	2/12/2007	07020720	RA-228	Radium-228	N001	0.0695	pCi/L	U	F	0.448	0.24	valid
B5 POND	SL	2/12/2007	07020720	U-234	Uranium-234	N001	3.78	pCi/L		F	0.0419	0.456	valid
B5 POND	SL	2/12/2007	07020720	U-235+236	Uranium-235/236	N001	0.188	pCi/L		F	0.0429	0.0472	valid
B5 POND	SL	2/12/2007	07020720	U-238	Uranium-238	N001	3.85	pCi/L		F	0.0298	0.463	valid
B5 POND	SL	3/19/2007	07030793	57-12-5	Total Cyanide	N001	0.0024	mg/L	U	F	0.002		J
C2 POND	UN	2/12/2007	07020720	NH3+NH4-N	Ammonia Total as N	N001	0.014	mg/L	J	F	0.010		valid
C2 POND	UN	2/12/2007	07020720	RA-228	Radium-228	N001	0.462	pCi/L	U	F	0.854	0.513	valid
C2 POND	UN	2/12/2007	07020720	57-12-5	Total Cyanide	N001	0.0015	mg/L	U	F	0.002		valid
GS01	SL	1/9/2007	07010677	AM-241	Americium-241	N001	0.00343	pCi/L	U	F	0.0247	0.00536	valid
GS01	SL	1/9/2007	07010677	PU-239,240	Plutonium-239, 240	N001	0.00824	pCi/L	U	F	0.0157	0.00811	valid
GS01	SL	1/9/2007	07010677	U-234	Uranium-234	N001	1.37	pCi/L		F	0.039	0.164	valid
GS01	SL	1/9/2007	07010677	U-235+236	Uranium-235/236	N001	0.047	pCi/L		F	0.0398	0.0224	J
GS01	SL	1/9/2007	07010677	U-238	Uranium-238	N001	1.03	pCi/L		F	0.0277	0.131	valid
GS01	SL	1/16/2007	07020718	AM-241	Americium-241	N001	-0.00531	pCi/L	U	F	0.024	0.0128	valid
GS01	SL	1/16/2007	07020718	PU-239,240	Plutonium-239, 240	N001	0.0145	pCi/L		F	0.0144	0.0137	J
GS01	SL	1/16/2007	07020718	U-234	Uranium-234	N001	1.39	pCi/L		F	0.17	0.261	valid
GS01	SL	1/16/2007	07020718	U-235+236	Uranium-235/236	N001	0.107	pCi/L	U	F	0.173	0.0699	valid
GS01	SL	1/16/2007	07020718	U-238	Uranium-238	N001	1.34	pCi/L		F	0.121	0.259	valid
GS01	SL	2/7/2007	07020731	AM-241	Americium-241	N001	0.00179	pCi/L	U	F	0.021	0.00806	valid
GS01	SL	2/7/2007	07020731	PU-239,240	Plutonium-239, 240	N001	0	pCi/L	U	F	0.0118	0.0106	valid
GS01	SL	2/7/2007	07020731	U-234	Uranium-234	N001	0.583	pCi/L		F	0.0424	0.0942	valid
GS01	SL	2/7/2007	07020731	U-235+236	Uranium-235/236	N001	0.0317	pCi/L	U	F	0.0434	0.0211	valid
GS01	SL	2/7/2007	07020731	U-238	Uranium-238	N001	0.447	pCi/L		F	0.0302	0.0774	valid
GS01	SL	2/9/2007	07020731	AM-241	Americium-241	N001	0.0056	pCi/L	U	F	0.0212	0.00818	valid
GS01	SL	2/9/2007	07020731	PU-239,240	Plutonium-239, 240	N001	0.00831	pCi/L	U	F	0.0126	0.00732	valid
GS01	SL	2/9/2007	07020731	U-234	Uranium-234	N001	0.779	pCi/L		F	0.0368	0.112	valid
GS01	SL	2/9/2007	07020731	U-235+236	Uranium-235/236	N001	0.0444	pCi/L		F	0.0376	0.0205	J
GS01	SL	2/9/2007	07020731	U-238	Uranium-238	N001	0.655	pCi/L		F	0.0262	0.0979	valid
GS01	SL	2/14/2007	07030788	AM-241	Americium-241	N001	0.00874	pCi/L	U	F	0.0288	0.0116	valid
GS01	SL	2/14/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.00419	pCi/L	U	F	0.025	0.006	valid
GS01	SL	2/14/2007	07030788	U-234	Uranium-234	N001	1.09	pCi/L		F	0.0857	0.177	valid
GS01	SL	2/14/2007	07030788	U-235+236	Uranium-235/236	N001	0.0489	pCi/L	U	F	0.061	0.0305	valid
GS01	SL	2/14/2007	07030788	U-238	Uranium-238	N001	0.771	pCi/L		F	0.0782	0.138	valid
GS01	SL	2/26/2007	07030789	AM-241	Americium-241	N001	0.000675	pCi/L	U	F	0.0248	0.00994	valid
GS01	SL	2/26/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.00826	pCi/L	U	F	0.0148	0.00858	valid
GS01	SL	2/26/2007	07030789	U-234	Uranium-234	N001	1.32	pCi/L		F	0.0967	0.212	valid
GS01	SL	2/26/2007	07030789	U-235+236	Uranium-235/236	N001	0.0597	pCi/L	U	F	0.0688	0.0356	valid
GS01	SL	2/26/2007	07030789	U-238	Uranium-238	N001	0.982	pCi/L		F	0.0882	0.171	valid
GS01	SL	3/8/2007	07030789	AM-241	Americium-241	N001	-0.0038	pCi/L	U	F	0.0248	0.0124	valid
GS01	SL	3/8/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.00205	pCi/L	U	F	0.0243	0.0106	valid
GS01	SL	3/8/2007	07030789	U-234	Uranium-234	N001	0.684	pCi/L		F	0.0654	0.114	valid
GS01	SL	3/8/2007	07030789	U-235+236	Uranium-235/236	N001	0.0311	pCi/L	U	F	0.0465	0.0231	valid
GS01	SL	3/8/2007	07030789	U-238	Uranium-238	N001	0.521	pCi/L		F	0.060	0.094	valid
GS01	SL	3/12/2007	07040826	AM-241	Americium-241	N001	-0.00788	pCi/L	U	F	0.025	0.0119	valid
GS01	SL	3/12/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.00301	pCi/L	U	F	0.0228	0.0102	valid
GS01	SL	3/12/2007	07040826	U-234	Uranium-234	N001	1.01	pCi/L		F	0.055	0.144	valid
GS01	SL	3/12/2007	07040826	U-235+236	Uranium-235/236	N001	0.0837	pCi/L		F	0.0354	0.0334	J
GS01	SL	3/12/2007	07040826	U-238	Uranium-238	N001	0.835	pCi/L		F	0.042	0.124	valid
GS01	SL	3/25/2007	07040826	AM-241	Americium-241	N001	0.00659	pCi/L	U	F	0.0258	0.0127	valid

			LAB REQUISITION						LAB	-		UNCER-	
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID		UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
GS01	SL	3/25/2007	07040826	PU-239,240	Plutonium-239, 240	N001	-0.00504	pCi/L	U	F	0.0254	0.00872	valid
GS01	SL	3/25/2007	07040826	U-234	Uranium-234	N001	1.23 0.047	pCi/L		-	0.066	0.163	valid
GS01	SL SL	3/25/2007 3/25/2007	07040826 07040826	U-235+236 U-238	Uranium-235/236 Uranium-238	N001 N001	1.03	pCi/L pCi/L		r	0.0422 0.0502	0.0274 0.142	valid
GS01	SL	1/11/2007	07040826	0-238 AM-241	Americium-241	N001	0.00472	pCi/L		г	0.0502	0.142	valid
GS03 GS03	SL	1/11/2007	07010677	PU-239,240	Plutonium-239, 240	N001	0.00472	pCi/L	U	Г	0.027	0.014	valid
GS03	SL	1/11/2007	07010677	U-239,240	Uranium-234	N001	2.04	pCi/L	U	г -	0.015	0.254	valid
GS03	SL	1/11/2007	07010677	U-235+236	Uranium-235/236	N001	0.0802	pCi/L		F	0.0556	0.234	ı
GS03	SL	1/11/2007	07010677	U-238	Uranium-238	N001	1.83	pCi/L		г -	0.0371	0.0339	valid
GS03	SL	2/6/2007	07020718	AM-241	Americium-241	N001	0.0231	pCi/L	11	F	0.0397	0.231	valid
GS03	SL	2/6/2007	07020718	PU-239,240	Plutonium-239, 240	N001	0.00633	pCi/L	11	-	0.0276	0.007	valid
GS03	SL	2/6/2007	07020718	TSS	Total Suspended Solids	N001	8.57	mg/L	1	F	4.07	0.007	valid
GS03	SL	2/6/2007	07020718	U-234	Uranium-234	N001	1.17	pCi/L	J	F	0.195	0.253	valid
GS03	SL	2/6/2007	07020718	U-235+236	Uranium-235/236	N001	0.0561	pCi/L	11	-	0.193	0.233	valid
GS03	SL	2/6/2007	07020718	U-238	Uranium-238	N001	0.908	pCi/L	U	F	0.139	0.0733	valid
GS03	SL	2/7/2007	07030788	AM-241	Americium-241	N001	-0.00229	pCi/L	11	-	0.0282	0.0088	valid
GS03	SL	2/7/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.00229	pCi/L	11	r F	0.0282	0.0088	valid
GS03	SL	2/7/2007	07030788	U-234	Uranium-234	N001	1.17	pCi/L	0	E	0.0255	0.0127	valid
GS03	SL	2/7/2007	07030788	U-235+236	Uranium-235/236	N001	0.0704	pCi/L		F	0.0823	0.185	I
GS03	SL	2/7/2007	07030788	U-238	Uranium-238	N001	1.07	pCi/L		_	0.0366	0.04	valid
GS03	SL	3/1/2007	07030788	AM-241	Americium-241	N001	-0.00231	pCi/L	11	-	0.028	0.005	valid
GS03	SL	3/1/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	3.26	mg/L	U	_	0.026	0.003	valid
GS03	SL	3/1/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.0023	pCi/L	11	-	0.0273	0.00782	valid
GS03	SL	3/1/2007	07030788	U-239,240	Uranium-234	N001	3.15	pCi/L	U	F	0.0273	0.426	valid
GS03	SL	3/1/2007	07030788	U-235+236	Uranium-235/236	N001	0.193	pCi/L		-	0.0603	0.420	valid
GS03	SL	3/1/2007	07030788	U-238	Uranium-238	N001	3.04	pCi/L		F	0.0003	0.412	valid
GS03	SL	3/3/2007	07030788	AM-241	Americium-241	N001	0.00352	pCi/L	11	г -	0.0279	0.00432	valid
GS03	SL	3/3/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	5.1	mg/L	U	_	0.0279	0.00432	valid
GS03	SL	3/3/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.0238	pCi/L	11	<u>'</u>	0.0256	0.0142	valid
GS03	SL	3/3/2007	07030788	U-234	Uranium-234	N001	3.13	pCi/L	0	-	0.0712	0.409	valid
GS03	SL	3/3/2007	07030788	U-235+236	Uranium-235/236	N001	0.149	pCi/L		F	0.0507	0.0509	I
GS03	SL	3/3/2007	07030788	U-238	Uranium-238	N001	2.83	pCi/L		F	0.065	0.374	valid
GS03	SL	3/5/2007	07030788	AM-241	Americium-241	N001	-0.000659	pCi/L	11	F	0.003	0.00945	valid
GS03	SL	3/5/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	3.57	mg/L	0	F	0.027	0.00343	valid
GS03	SL	3/5/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0	pCi/L	П	F	0.0284	0.00938	valid
GS03	SL	3/5/2007	07030788	U-234	Uranium-234	N001	3.18	pCi/L		F	0.0861	0.432	valid
GS03	SL	3/5/2007	07030788	U-235+236	Uranium-235/236	N001	0.131	pCi/L		F	0.0613	0.0493	.I
GS03	SL	3/5/2007	07030788	U-238	Uranium-238	N001	2.74	pCi/L		F.	0.0785	0.378	valid
GS03	SL	3/7/2007	07030789	AM-241	Americium-241	N001	0.000237	pCi/L	П	F.	0.027	0.0126	valid
GS03	SL	3/7/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	3.71	mg/L	Ü	F.	0.1	0.0120	valid
GS03	SL	3/7/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.0126	pCi/L	U	F.	0.0199	0.0119	valid
GS03	SL	3/7/2007	07030789	U-234	Uranium-234	N001	2.82	pCi/L	1	F	0.0661	0.366	valid
GS03	SL	3/7/2007	07030789	U-235+236	Uranium-235/236	N001	0.132	pCi/L		F	0.0471	0.0445	J
GS03	SL	3/7/2007	07030789	U-238	Uranium-238	N001	2.73	pCi/L	1	F	0.0603	0.356	valid
GS03	SL	3/9/2007	07030789	AM-241	Americium-241	N001	-0.0068	pCi/L	U	F	0.027	0.0121	valid
GS03	SL	3/9/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	3.7	ma/L	1	F	0.1		valid
GS03	SL	3/9/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.00514	pCi/L	U	F	0.0203	0.0154	valid
GS03	SL	3/9/2007	07030789	U-234	Uranium-234	N001	2.65	pCi/L	1	F	0.0687	0.348	valid
GS03	SL	3/9/2007	07030789	U-235+236	Uranium-235/236	N001	0.144	pCi/L	Ì	F	0.0489	0.0465	J
GS03	SL	3/9/2007	07030789	U-238	Uranium-238	N001	2.29	pCi/L		F	0.0627	0.306	valid
GS03	SL	3/11/2007	07030789	AM-241	Americium-241	N001	-0.00529	pCi/L	U	F	0.0265	0.00631	valid
GS03	SL	3/11/2007	07030789	AM-241	Americium-241	N002	0.00126	pCi/L	U	D.	0.0267	0.0108	valid
GS03	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	2.96	mg/L	Ì	F	0.1		valid
GS03	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N002	3.16	mg/L	1	D	0.1		valid
GS03	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.00572	pCi/L	U	F	0.0206	0.00839	valid
GS03	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N002	-0.0149	pCi/L	Ū	D.	0.0191	0.0137	valid
GS03	SL	3/11/2007	07030789	U-234	Uranium-234	N001	2.33	pCi/L	1	F	0.0806	0.33	valid
GS03	SL	3/11/2007	07030789	U-234	Uranium-234	N002	2.2	pCi/L	1	D.	0.0691	0.303	valid

LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS03	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N001	0.192	pCi/L		F	0.0574	0.058	valid
GS03	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N002	0.125	pCi/L		D	0.0492	0.0453	J
GS03	SL	3/11/2007	07030789	U-238	Uranium-238	N001	1.89	pCi/L		F	0.0735	0.276	valid
GS03	SL	3/11/2007	07030789	U-238	Uranium-238	N002	2.02	pCi/L		D	0.0631	0.28	valid
GS03	SL	3/14/2007	07040826	AM-241	Americium-241	N001	-0.00104	pCi/L	U	F	0.0252	0.00363	valid
GS03	SL	3/14/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.00762	pCi/L	U	F	0.023	0.00898	valid
GS03	SL	3/14/2007	07040826	U-234	Uranium-234	N001	1.79	pCi/L		F	0.0603	0.238	valid
GS03	SL	3/14/2007	07040826	U-235+236	Uranium-235/236	N001	0.0727	pCi/L		F	0.0387	0.0296	J
GS03	SL	3/14/2007	07040826	U-238	Uranium-238	N001	1.39	pCi/L		F	0.0461	0.192	valid
GS03	SL	3/25/2007	07040866	AM-241	Americium-241	N001	-0.00907	pCi/L	U	F	0.0215	0.0115	valid
GS03	SL	3/25/2007	07040866	PU-239,240	Plutonium-239, 240	N001	0.018	pCi/L	U	F	0.0253	0.0155	valid
GS03	SL	3/25/2007	07040866	U-234	Uranium-234	N001	0.859	pCi/L		F	0.0517	0.125	valid
GS03	SL	3/25/2007	07040866	U-235+236	Uranium-235/236	N001	0.047	pCi/L		F	0.0307	0.0232	J
GS03	SL	3/25/2007	07040866	U-238	Uranium-238	N001	0.671	pCi/L		F	0.0486	0.103	valid
GS05	SL	1/18/2007	07010677	71-55-6	1,1,1-Trichloroethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	79-34-5	1,1,2,2-Tetrachloroethane	N001	1	ug/L	ū	F	1		valid
GS05	SL	1/18/2007	07010677	79-00-5	1,1,2-Trichloroethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	75-35-4	1,1-Dichloroethene	N001	1	ug/L	II	F	1		valid
GS05	SL	1/18/2007	07010677	120-82-1	1,2,4-Trichlorobenzene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	96-12-8	1,2-Dibromo-3-chloropropane	N001	1	ug/L	II		1		valid
GS05	SL	1/18/2007	07010677	106-93-4	1,2-Dibromoethane	N001	1	ug/L	U	· -	1		valid
GS05	SL	1/18/2007	07010677	95-50-1	1,2-Dichlorobenzene	N001	1	ug/L ug/L	U	г -	1		valid
	SL				,		1		II	F	4		
GS05	SL	1/18/2007	07010677	107-06-2	1,2-Dichloroethane	N001 N001	1	ug/L	U	F	4		valid
GS05		1/18/2007	07010677	78-87-5	1,2-Dichloropropane		1	ug/L	U	F	4		valid
GS05	SL	1/18/2007	07010677	541-73-1	1,3-Dichlorobenzene	N001	1	ug/L	U	-	1		valid
GS05	SL	1/18/2007	07010677	106-46-7	1,4-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	107-02-8	Acrolein	N001	5	ug/L	U	F	5		valid
GS05	SL	1/18/2007	07010677	107-13-1	Acrylonitrile	N001	5	ug/L	U	F	5		valid
GS05	SL	1/18/2007	07010677	71-43-2	Benzene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	75-27-4	Bromodichloromethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	75-25-2	Bromoform	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	74-83-9	Bromomethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	56-23-5	Carbon tetrachloride	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	108-90-7	Chlorobenzene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	124-48-1	Chlorodibromomethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	67-66-3	Chloroform	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	74-87-3	Chloromethane	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	156-59-2	cis-1,2-Dichloroethene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	87-68-3	Hexachlorobutadiene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	M&P XYLENE	m,p-Xylene	N001	2	ug/L	U	F	2		valid
GS05	SL	1/18/2007	07010677	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS05	SL	1/18/2007	07010677	75-09-2	Methylene chloride	N001	5	ug/L	U	F	5		valid
GS05	SL	1/18/2007	07010677	91-20-3	Naphthalene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	95-47-6	o-Xylene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	100-42-5	Styrene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	127-18-4	Tetrachloroethene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	108-88-3	Toluene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	100-41-4	Total Xylene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	156-60-5	trans-1,2-Dichloroethene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	10061-02-6	trans-1,3-dichloropropene	N001	1	ug/L	U	F	1		valid
GS05	SL	1/18/2007	07010677	79-01-6	Trichloroethene	N001	1	ug/L	ū	F	1		valid
GS05	SL	1/18/2007	07010677	75-01-4	Vinyl chloride	N001	1	ug/L	U	F	1		valid
GS05	SL	2/8/2007	07020731	7440-38-2	Arsenic	N001	7.8	ug/L	B	F.	6		II
GS05	SL	2/8/2007	07020731	7440-38-2	Beryllium	N001	1	ug/L	U	F	1		valid
GS05	SL	2/8/2007	07020731	7440-41-7	Boron	N001	23.6	ug/L ug/L	B	F	10		valid
GS05	SL	2/8/2007	07020731	7440-42-8	Cadmium	0001	1		II	-	1	-	valid
	SL			7440-43-9		N001	1.2	ug/L	Ь	 -	1		valid
GS05		2/8/2007	07020731		Copper		2	ug/L	II.		2	-	valid
GS05	SL	2/8/2007	07020731	7440-50-8	Copper	0001	J	ug/L	U	ĮF	ر ا	l	vailu

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS05	SL	2/8/2007	07020731	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.500		valid
GS05	SL	2/8/2007	07020731	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS05	SL	2/8/2007	07020731	7440-02-0	Nickel	0001	2.1	ug/L	В	F	1		valid
GS05	SL	2/8/2007	07020731	7782-49-2	Selenium	N001	6	ug/L	U	F	6		valid
GS05	SL	2/8/2007	07020731	7440-22-4	Silver	0001	1	ug/L	U	F	1		valid
GS05	SL	2/8/2007	07020731	U-234	Uranium-234	N001	0.164	pCi/L		F	0.0476	0.043	valid
GS05	SL	2/8/2007	07020731	U-235+236	Uranium-235/236	N001	0.0109	pCi/L	U	F	0.0486	0.0152	valid
GS05	SL	2/8/2007	07020731	U-238	Uranium-238	N001	0.102	pCi/L		F	0.0339	0.0333	valid
GS05	SL	2/8/2007	07020731	7440-66-6	Zinc	0001	9	ug/L	В	F	2		U
GS05	SL	2/14/2007	07030789	7440-38-2	Arsenic	N001	6	ug/L	U	F	6		J
GS05	SL	2/14/2007	07030789	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		J
GS05	SL	2/14/2007	07030789	7440-42-8	Boron	N001	12.2	ug/L	В	F	10		J
GS05	SL	2/14/2007	07030789	7440-43-9	Cadmium	0001	1	ug/L	U	F	1		J
GS05	SL	2/14/2007	07030789	7440-47-3	Chromium	N001	1.1	ug/L	В	F	1		J
GS05	SL	2/14/2007	07030789	7440-50-8	Copper	0001	3	ug/L	U	F	3		J
GS05	SL	2/14/2007	07030789	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		J
GS05	SL	2/14/2007	07030789	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS05	SL	2/14/2007	07030789	7440-02-0	Nickel	0001	1.8	ug/L	В	F	1		UJ
GS05	SL	2/14/2007	07030789	7782-49-2	Selenium	N001	6	ug/L	U	F	6		J
GS05	SL	2/14/2007	07030789	7440-22-4	Silver	0001	1	ug/L	U	F	1		J
GS05	SL	2/14/2007	07030789	U-234	Uranium-234	N001	0.173	pCi/L		F	0.0618	0.0464	J
GS05	SL	2/14/2007	07030789	U-235+236	Uranium-235/236	N001	0.0117	pCi/L	U	F	0.044	0.0163	valid
GS05	SL	2/14/2007	07030789	U-238	Uranium-238	N001	0.138	pCi/L		F.	0.0564	0.0399	J
GS05	SL	2/14/2007	07030789	7440-66-6	Zinc	0001	6.1	ug/L	В	F.	2	0.0000	UJ
GS05	SL	3/12/2007	07040826	7440-38-2	Arsenic	N001	6	ug/L	II.	F.	6		valid
GS05	SL	3/12/2007	07040826	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
GS05	SL	3/12/2007	07040826	7440-42-8	Boron	N001	18.6	ug/L	В	F	10		valid
GS05	SL	3/12/2007	07040826	7440-43-9	Cadmium	0001	1	ug/L	U	F	1		valid
GS05	SL	3/12/2007	07040826	7440-47-3	Chromium	N001	1.3	ug/L	B	F	1		valid
GS05	SL	3/12/2007	07040826	7440-50-8	Copper	0001	3.1	ug/L	В	F.	3		valid
GS05	SL	3/12/2007	07040826	7439-92-1	Lead	0001	2.5	ug/L	II	F	2.5		valid
GS05	SL	3/12/2007	07040826	7439-97-6	Mercury	N001	0.06	ug/L	11	F	0.06		valid
GS05	SL	3/12/2007	07040826	7440-02-0	Nickel	0001	2.9	ug/L	В	F	1		valid
GS05	SL	3/12/2007	07040826	7782-49-2	Selenium	N001	6	ug/L	II.	F	6		valid
GS05	SL	3/12/2007	07040826	7440-22-4	Silver	0001	1	ug/L	11	-	1		valid
GS05	SL	3/12/2007	07040826	U-234	Uranium-234	N001	0.192	pCi/L	0	-	0.059	0.0461	valid
GS05	SL	3/12/2007	07040826	U-235+236	Uranium-235/236	N001	0.0079	pCi/L	11	-	0.039	0.00898	valid
GS05	SL	3/12/2007	07040826	U-238	Uranium-238	N001	0.173	pCi/L	U	<u>'</u>	0.0376	0.00696	valid
GS05	SL	3/12/2007	07040826	7440-66-6	Zinc	0001	4.2	ug/L	D	-	2	0.0442	valid
GS08	SL	3/1/2007	07030788	AM-241	Americium-241	N001	-0.0186	pCi/L	li	-	0.0583	0.0309	valid
GS08	SL	3/1/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.695	mg/L		F	0.0565	0.0003	valid
GS08	SL	3/1/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.0165	pCi/L	11	r F	0.0622	0.0302	valid
GS08	SL	3/1/2007	07030788	U-234	Uranium-234	N001	5.69	pCi/L		r F	0.0622	0.0302	valid
GS08	SL	3/1/2007	07030788	U-235+236	Uranium-235/236	N001	0.396	pCi/L	 	r F	0.0498	0.711	valid
GS08	SL	3/1/2007	07030788	U-238	Uranium-238	N001	5	pCi/L		F	0.0496	0.631	valid
GS08	SL	3/3/2007	07030788	0-238 AM-241	Americium-241	N001	0.0117	pCi/L	11	-	0.0594	0.0113	valid
GS08	SL	3/3/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.73	ma/L	U	r F	0.0284	0.0113	valid
GS08	SL	3/3/2007	07030788	PU-239.240	Plutonium-239, 240	N001	-0.00231	pCi/L	ш	I E	0.05	0.012	valid
GS08	SL	3/3/2007	07030788	U-239,240 U-234		N001 N001	5.25		U	i.	0.0274	0.643	valid
GS08 GS08	SL				Uranium-234	N001	0.262	pCi/L pCi/L		i.		0.643	
		3/3/2007	07030788	U-235+236	Uranium-235/236		5.04			Г	0.0726 0.093		valid valid
GS08	SL	3/3/2007	07030788	U-238	Uranium-238	N001		pCi/L		<u> </u>		0.62	
GS08	SL	3/5/2007	07030788	AM-241	Americium-241	N001	0.00421	pCi/L	U	F	0.029	0.00487	valid
GS08	SL	3/5/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.625	mg/L	ļ.,	_	0.05	0.0400	valid
GS08	SL	3/5/2007	07030788	PU-239,240	Plutonium-239, 240	N001	-0.00215	pCi/L	U		0.0255	0.0126	valid
GS08	SL	3/5/2007	07030788	U-234	Uranium-234	N001	4.93	pCi/L	1	-	0.0891	0.586	valid
GS08	SL	3/5/2007	07030788	U-235+236	Uranium-235/236	N001	0.263	pCi/L	1	-	0.0634	0.0721	valid
GS08	SL	3/5/2007	07030788	U-238	Uranium-238	N001	4.74	pCi/L	l	F	0.0813	0.565	valid
GS08	SL	3/7/2007	07030789	AM-241	Americium-241	N001	-0.00399	pCi/L	U	ŀ	0.0256	0.00909	valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS08	SL	3/7/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.0435	mg/L	J	F	0.01		valid
GS08	SL	3/7/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.0079	pCi/L	U	F	0.0165	0.0092	valid
GS08	SL	3/7/2007	07030789	U-234	Uranium-234	N001	4.97	pCi/L		F	0.076	0.631	valid
GS08	SL	3/7/2007	07030789	U-235+236	Uranium-235/236	N001	0.206	pCi/L		F	0.0541	0.0628	valid
GS08	SL	3/7/2007	07030789	U-238	Uranium-238	N001	4.6	pCi/L		F	0.0693	0.588	valid
GS08	SL	3/9/2007	07030789	AM-241	Americium-241	N001	0.000335	pCi/L	U	F	0.0254	0.011	valid
GS08	SL	3/9/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.64	mg/L		F	0.05		valid
GS08	SL	3/9/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.0028	pCi/L	U	F	0.0169	0.00783	valid
GS08	SL	3/9/2007	07030789	U-234	Uranium-234	N001	4.7	pCi/L		F	0.0694	0.588	valid
GS08	SL	3/9/2007	07030789	U-235+236	Uranium-235/236	N001	0.228	pCi/L		F	0.0494	0.0599	valid
GS08	SL	3/9/2007	07030789	U-238	Uranium-238	N001	4.43	pCi/L		F	0.0634	0.556	valid
GS08	SL	3/11/2007	07030789	AM-241	Americium-241	N001	-0.00415	pCi/L	U	F	0.0255	0.00641	valid
GS08	SL	3/11/2007	07030789	AM-241	Americium-241	N002	0.00353	pCi/L	U	D	0.0263	0.00903	valid
GS08	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.01	mg/L	U	F	0.01		valid
GS08	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N002	0.01	mg/L	U	D	0.01		valid
GS08	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N001	-0.00298	pCi/L	U	F	0.0173	0.0104	valid
GS08	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N002	-0.0112	pCi/L	U	D	0.0236	0.0156	valid
GS08	SL	3/11/2007	07030789	U-234	Uranium-234	N001	4.72	pCi/L		F	0.0747	0.6	valid
GS08	SL	3/11/2007	07030789	U-234	Uranium-234	N002	4.97	pCi/L		D	0.093	0.67	valid
GS08	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N001	0.238	pCi/L		F	0.0531	0.0634	valid
GS08	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N002	0.208	pCi/L		D	0.0662	0.0659	valid
GS08	SL	3/11/2007	07030789	U-238	Uranium-238	N001	4.59	pCi/L		F	0.0681	0.584	valid
GS08	SL	3/11/2007	07030789	U-238	Uranium-238	N002	4.29	pCi/L		D.	0.0848	0.586	valid
GS10	SL	1/10/2007	07020718	AM-241	Americium-241	N001	0.00496	pCi/L	U	F	0.0235	0.0102	valid
GS10	SL	1/10/2007	07020718	7440-41-7	Beryllium	N001	1	ug/L	II	F.	1	0.0.02	valid
GS10	SL	1/10/2007	07020718	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
GS10	SL	1/10/2007	07020718	7440-47-3	Chromium	N001	1	ug/L	11	F	1		valid
GS10	SL	1/10/2007	07020718	HARDNESS	Hardness	N001	227	mg/L	Ŭ	F	2		valid
GS10	SL	1/10/2007	07020718	PU-239,240	Plutonium-239, 240	N001	0.0266	pCi/L		F	0.0125	0.0171	J
GS10	SL	1/10/2007	07020718	7440-22-4	Silver	0001	0.0200	ug/L	П	F.	0.2	0.0171	valid
GS10	SL	1/10/2007	07020718	U-234	Uranium-234	N001	5.27	pCi/L		F	0.181	0.728	valid
GS10	SL	1/10/2007	07020718	U-235+236	Uranium-235/236	N001	0.104	pCi/L	П	F	0.185	0.105	valid
GS10	SL	1/10/2007	07020718	U-238	Uranium-238	N001	5.47	pCi/L	0	F	0.129	0.752	valid
GS10	SL	2/8/2007	07030788	AM-241	Americium-241	N001	0.0092	pCi/L	П	F	0.0296	0.012	valid
GS10	SL	2/8/2007	07030788	7440-41-7	Beryllium	N001	1	ug/L	11	F	1	0.012	I
GS10	SL	2/8/2007	07030788	7440-43-9	Cadmium	0001	0.1	ug/L	U U	-	0.1		valid
GS10	SL	2/8/2007	07030788	7440-43-9	Chromium	N001	1	ug/L	11	-	1		I
GS10	SL	2/8/2007	07030788	HARDNESS	Hardness	N001	349	mg/L	U	<u>'</u>	5		valid
GS10	SL	2/8/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.0111	pCi/L	11	-	0.0263	0.0145	valid
GS10	SL	2/8/2007	07030788	7440-22-4	Silver	0001	0.0111	ug/L	11	-	0.0203	0.0143	valid
GS10	SL	2/8/2007	07030788	U-234	Uranium-234	N001	7.01	pCi/L	<u> </u>	r F	0.0874	0.805	valid
GS10	SL	2/8/2007	07030788	U-235+236	Uranium-235/236	N001	0.382	pCi/L	1	r F	0.0622	0.805	valid
GS10	SL	2/8/2007	07030788	U-238	Uranium-238	N001	6.43	pCi/L		r F	0.0622	0.743	valid
GS10	SL	3/2/2007	07040826	O-238 AM-241	Americium-241	N001	0.0331	pCi/L	1	r F	0.0798	0.743	VailU I
GS10	SL	3/2/2007	07040826	7440-41-7	Beryllium	N001	1	ug/L	11	F	1	0.0133	valid
GS10	SL	3/2/2007	07040826	7440-41-7	Cadmium	0001	0.1	ug/L ug/L	11	-	0.1	1	valid
GS10	SL	3/2/2007	07040826	7440-43-9	Chromium	N001	7.1	ug/L ug/L	B	-	1	1	valid
GS10	SL	3/2/2007	07040826	HARDNESS	Hardness	N001	410	ma/L	D	I E	2	1	valid
GS10 GS10	SL	3/2/2007	07040826			N001	0.0384		1		0.0277	0.0182	valiu
GS10 GS10	SL			PU-239,240 7440-22-4	Plutonium-239, 240 Silver	0001	0.0384	pCi/L	11	i.	0.0277	0.0162	valid
	SL	3/2/2007	07040826					ug/L	U	Г		0.650	valid
GS10	-	3/2/2007	07040826	U-234	Uranium-234	N001	6.13	pCi/L	1	<u> </u>	0.0654	0.658	
GS10	SL	3/2/2007	07040826	U-235+236	Uranium-235/236	N001	0.234	pCi/L		F	0.042	0.0563	valid
GS10	SL	3/2/2007	07040826	U-238	Uranium-238	N001	5.78	pCi/L	1	_	0.05	0.623	valid
GS10	SL	3/25/2007	07040845	AM-241	Americium-241	N001	0.0413	pCi/L		-	0.0263	0.0163	J
GS10	SL	3/25/2007	07040845	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
GS10	SL	3/25/2007	07040845	7440-43-9	Cadmium	0001	0.344	ug/L	J	F	0.1		valid
GS10	SL	3/25/2007	07040845	7440-47-3	Chromium	N001	1.45	ug/L	J	F	1	ļ	U
GS10	SL	3/25/2007	07040845	HARDNESS	Hardness	N001	522	mg/L		F	2		valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS10	SL	3/25/2007	07040845	PU-239,240	Plutonium-239, 240	N001	0.0759	pCi/L		F	0.0239	0.0233	valid
GS10	SL	3/25/2007	07040845	7440-22-4	Silver	0001	0.2	ug/L	J	F	0.2		valid
GS10	SL	3/25/2007	07040845	U-234	Uranium-234	N001	8.99	pCi/L		F	0.0833	0.993	valid
GS10	SL	3/25/2007	07040845	U-235+236	Uranium-235/236	N001	0.338	pCi/L		F	0.0534	0.0787	valid
GS10	SL	3/25/2007	07040845	U-238	Uranium-238	N001	7.98	pCi/L		F	0.0636	0.887	valid
GS11	SL	3/1/2007	07030788	AM-241	Americium-241	N001	-0.0116	pCi/L	U	F	0.028	0.0117	valid
GS11	SL	3/1/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	6.26	mg/L		F	0.1		valid
GS11	SL	3/1/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.00706	pCi/L	U	F	0.0279	0.0153	valid
GS11	SL	3/1/2007	07030788	U-234	Uranium-234	N001	2.01	pCi/L		F	0.0767	0.259	valid
GS11	SL	3/1/2007	07030788	U-235+236	Uranium-235/236	N001	0.0766	pCi/L		F	0.0546	0.038	J
GS11	SL	3/1/2007	07030788	U-238	Uranium-238	N001	1.84	pCi/L		F	0.07	0.24	valid
GS11	SL	3/5/2007	07030788	AM-241	Americium-241	N001	0.00398	pCi/L	U	F	0.03	0.00829	valid
GS11	SL	3/5/2007	07030788	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	6.26	mg/L		F	0.1		valid
GS11	SL	3/5/2007	07030788	PU-239.240	Plutonium-239, 240	N001	-0.00205	pCi/L	U	F	0.0244	0.0121	valid
GS11	SL	3/5/2007	07030788	U-234	Uranium-234	N001	2.17	pCi/L		F	0.0761	0.275	valid
GS11	SL	3/5/2007	07030788	U-235+236	Uranium-235/236	N001	0.0904	pCi/L		F	0.0541	0.0367	J
GS11	SL	3/5/2007	07030788	U-238	Uranium-238	N001	1.8	pCi/L		F	0.0694	0.236	valid
GS11	SL	3/7/2007	07030789	AM-241	Americium-241	N001	0.000519	pCi/L	U	F	0.0261	0.0113	valid
GS11	SL	3/7/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	6.01	mg/L	_	F	0.0201	0.0110	valid
GS11	SL	3/7/2007	07030789	PU-239,240	Plutonium-239, 240	N001	0.0156	pCi/L	U	F.	0.018	0.0118	valid
GS11	SL	3/7/2007	07030789	U-234	Uranium-234	N001	2.09	pCi/L		F.	0.061	0.276	valid
GS11	SL	3/7/2007	07030789	U-235+236	Uranium-235/236	N001	0.12	pCi/L		F	0.044	0.039	I
GS11	SL	3/7/2007	07030789	U-238	Uranium-238	N001	1.85	pCi/L			0.056	0.248	valid
GS11	SL	3/9/2007	07030789	AM-241	Americium-241	N001	0.000635	pCi/L	11	Г	0.036	0.00965	valid
GS11	SL	3/9/2007	07030789	NO3+NO2 AS N		N001	5.62	-	U	г г	0.0269	0.00965	valid
GS11	SL	3/9/2007	07030789	PU-239,240	Nitrate + Nitrite as Nitrogen Plutonium-239, 240	N001	0.0103	mg/L pCi/L	U	Г	0.0196	0.0125	valid
	SL			U-234		N001	2.05		U	г г	0.0196		valid
GS11	SL	3/9/2007	07030789		Uranium-234	N001	0.0911	pCi/L		г	0.062	0.296 0.0443	.I
GS11	SL	3/9/2007	07030789	U-235+236	Uranium-235/236	N001	1.94	pCi/L		Г			Ů
GS11		3/9/2007	07030789	U-238	Uranium-238			pCi/L		F	0.0795	0.285	valid
GS11	SL	3/11/2007	07030789	AM-241	Americium-241	N001	0.00856	pCi/L	U	F D	0.028	0.007	valid
GS11	SL	3/11/2007	07030789	AM-241	Americium-241	N002	0.00103	pCi/L	U	D	0.0264	0.00835	valid
GS11	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	5.03	mg/L		F	0.1		valid
GS11	SL	3/11/2007	07030789	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N002	5.33	mg/L		D	0.100		valid
GS11	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N001	-0.0226	pCi/L	U	F	0.0175	0.0178	valid
GS11	SL	3/11/2007	07030789	PU-239,240	Plutonium-239, 240	N002	0.00602	pCi/L	U	D	0.0238	0.0152	valid
GS11	SL	3/11/2007	07030789	U-234	Uranium-234	N001	2.07	pCi/L		F	0.0591	0.271	valid
GS11	SL	3/11/2007	07030789	U-234	Uranium-234	N002	2.05	pCi/L		D	0.0841	0.299	valid
GS11	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N001	0.11	pCi/L		F	0.0421	0.0366	J
GS11	SL	3/11/2007	07030789	U-235+236	Uranium-235/236	N002	0.18	pCi/L		D	0.0599	0.0602	valid
GS11	SL	3/11/2007	07030789	U-238	Uranium-238	N001	1.89	pCi/L		F	0.0539	0.251	valid
GS11	SL	3/11/2007	07030789	U-238	Uranium-238	N002	1.75	pCi/L	ļ	D	0.0767	0.261	valid
GS13	SL	1/10/2007	07030789	U-234	Uranium-234	N001	2.37	pCi/L	ļ	F	0.0841	0.332	valid
GS13	SL	1/10/2007	07030789	U-235+236	Uranium-235/236	N001	0.092	pCi/L	ļ	F	0.0599	0.0422	J
GS13	SL	1/10/2007	07030789	U-238	Uranium-238	N001	1.83	pCi/L		F	0.077	0.268	valid
GS13	SL	1/11/2007	07010656	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	5.7	mg/L		F	0.019		valid
GS13	SL	1/11/2007	07010656	7440-61-1	Uranium	N001	3.6	ug/L		F	0.04		valid
GS13	SL	2/15/2007	07020727	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	13	mg/L		F	0.19		valid
GS13	SL	2/15/2007	07020727	7440-61-1	Uranium	N001	7.4	ug/L		F	0.020		valid
GS13	SL	3/6/2007	07030773	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	14	mg/L		F	0.19		valid
GS13	SL	3/6/2007	07030773	7440-61-1	Uranium	N001	7.8	ug/L		F	0.02		valid
GS13	SL	3/8/2007	07040826	U-234	Uranium-234	N001	3.03	pCi/L		F	0.162	0.426	valid
GS13	SL	3/8/2007	07040826	U-235+236	Uranium-235/236	N001	0.13	pCi/L		F	0.104	0.062	J
GS13	SL	3/8/2007	07040826	U-238	Uranium-238	N001	2.72	pCi/L		F	0.124	0.39	valid
GS13	SL	3/19/2007	07030793	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	11	mg/L		F	0.19		valid
GS13	SL	3/19/2007	07030793	7440-61-1	Uranium	N001	8.4	ug/L		F	0.02		valid
GS13	SL	3/25/2007	07040845	U-234	Uranium-234	N001	3.8	pCi/L		F	0.246	0.561	valid
GS13	SL	3/25/2007	07040845	U-235+236	Uranium-235/236	N001	0.252	pCi/L		F	0.158	0.115	J
GS13	SL	3/25/2007	07040845	U-238	Uranium-238	N001	3.21	pCi/L		F	0.188	0.494	valid

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS		DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS51	SL	2/7/2007	07030788	AM-241	Americium-241	N001	0.0432	pCi/L	Q071212.10	F	0.0389	0.0204	J
GS51	SL	2/7/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.249	pCi/L		F	0.0244	0.0517	valid
GS51	SL	3/2/2007	07040826	AM-241	Americium-241	N001	0.129	pCi/L		F	0.0265	0.0284	valid
GS51	SL	3/2/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.626	pCi/L		F	0.0223	0.0807	valid
GS59	SL	1/18/2007	07010677	71-55-6	1,1,1-Trichloroethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	79-34-5	1,1,2,2-Tetrachloroethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	79-00-5	1,1,2-Trichloroethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	75-35-4	1,1-Dichloroethene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	120-82-1	1.2.4-Trichlorobenzene	N001	1	ua/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	96-12-8	1,2-Dibromo-3-chloropropane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	106-93-4	1,2-Dibromoethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	95-50-1	1,2-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	107-06-2	1,2-Dichloroethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	78-87-5	1,2-Dichloropropane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	541-73-1	1,3-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	106-46-7	1,4-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	107-02-8	Acrolein	N001	5	ug/L	U	F	5		valid
GS59	SL	1/18/2007	07010677	107-13-1	Acrylonitrile	N001	5	ug/L	U	F	5		valid
GS59	SL	1/18/2007	07020731	7440-38-2	Arsenic		9.8	ug/L	В	F	6		U
GS59	SL	1/18/2007	07010677	71-43-2	Benzene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-41-7	Beryllium	N002	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-42-8	Boron	N002	19.9	ug/L	В	F	10		valid
GS59	SL	1/18/2007	07010677	75-27-4	Bromodichloromethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	75-25-2	Bromoform	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	74-83-9	Bromomethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-43-9	Cadmium		1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	56-23-5	Carbon tetrachloride	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	108-90-7	Chlorobenzene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	124-48-1	Chlorodibromomethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	67-66-3	Chloroform	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	74-87-3	Chloromethane	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-47-3	Chromium	N002	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	156-59-2	cis-1,2-Dichloroethene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-50-8	Copper	0001	3	ug/L	U	F	3		valid
GS59	SL	1/18/2007	07010677	87-68-3	Hexachlorobutadiene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		valid
GS59	SL	1/18/2007	07010677	M&P XYLENE	m,p-Xylene	N001	2	ug/L	U	F	2		valid
GS59	SL	1/18/2007	07010677	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS59	SL	1/18/2007	07020731	7439-97-6	Mercury	N002	0.06	ug/L	U	F	0.06		valid
GS59	SL	1/18/2007	07010677	75-09-2	Methylene chloride		5	ug/L	U	F	5		valid
GS59	SL	1/18/2007	07010677	91-20-3	Naphthalene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-02-0	Nickel	0001	1.6	ug/L	В	F	1		valid
GS59	SL	1/18/2007	07010677	95-47-6	o-Xylene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7782-49-2	Selenium	N002	6	ug/L	U	F	6		valid
GS59	SL	1/18/2007	07020731	7440-22-4	Silver	0001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	100-42-5	Styrene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	127-18-4	Tetrachloroethene		1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	108-88-3	Toluene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	100-41-4	Total Xylene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	156-60-5	trans-1,2-Dichloroethene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	10061-02-6	trans-1,3-dichloropropene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07010677	79-01-6	Trichloroethene	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	U-234	Uranium-234	N002	0.334	pCi/L	Ī	F	0.0446	0.0643	valid
GS59	SL	1/18/2007	07020731	U-235+236	Uranium-235/236	N002	0.0282	pCi/L	U	F	0.0456	0.017	valid
GS59	SL	1/18/2007	07020731	U-238	Uranium-238	N002	0.253	pCi/L	Ì	F	0.0318	0.0538	valid
GS59	SL	1/18/2007	07010677	75-01-4	Vinyl chloride	N001	1	ug/L	U	F	1		valid
GS59	SL	1/18/2007	07020731	7440-66-6	Zinc	0001	5.8	ug/L	В	F	2		U
													-

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GS59	SL	2/14/2007	07030789	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		J
GS59	SL	2/14/2007	07030789	7440-42-8	Boron	N001	14.5	ug/L	В	F	10		J
GS59	SL	2/14/2007	07030789	7440-43-9	Cadmium	0001	1	ug/L	U	F	1		J
GS59	SL	2/14/2007	07030789	7440-47-3	Chromium	N001	1	ug/L	U	F	1		J
GS59	SL	2/14/2007	07030789	7440-50-8	Copper	0001	3	ug/L	U	F	3		J
GS59	SL	2/14/2007	07030789	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		J
GS59	SL	2/14/2007	07030789	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS59	SL	2/14/2007	07030789	7440-02-0	Nickel	0001	2.1	ug/L	В	F	1		UJ
GS59	SL	2/14/2007	07030789	7782-49-2	Selenium	N001	6	ug/L	U	F	6		J
GS59	SL	2/14/2007	07030789	7440-22-4	Silver	0001	1	ug/L	U	F	1		J
GS59	SL	2/14/2007	07030789	U-234	Uranium-234	N001	0.347	pCi/L		F	0.0579	0.0687	valid
GS59	SL	2/14/2007	07030789	U-235+236	Uranium-235/236	N001	0.022	pCi/L	U	F	0.0412	0.0172	valid
GS59	SL	2/14/2007	07030789	U-238	Uranium-238	N001	0.292	pCi/L		F	0.0528	0.0603	valid
GS59	SL	2/14/2007	07030789	7440-66-6	Zinc	0001	4.8	ug/L	В	F	2		UJ
GS59	SL	3/12/2007	07040826	7440-38-2	Arsenic	N001	6	ug/L	U	F	6		valid
GS59	SL	3/12/2007	07040826	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
GS59	SL	3/12/2007	07040826	7440-42-8	Boron	N001	19.9	ug/L	В	F	10		valid
GS59	SL	3/12/2007	07040826	7440-43-9	Cadmium	0001	1	ug/L	U	F	1		valid
GS59	SL	3/12/2007	07040826	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
GS59	SL	3/12/2007	07040826	7440-50-8	Copper	0001	3	ug/L	U	F.	3		valid
GS59	SL	3/12/2007	07040826	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		valid
GS59	SL	3/12/2007	07040826	7439-97-6	Mercury	N001	0.06	ug/L	U	F	0.06		valid
GS59	SL	3/12/2007	07040826	7440-02-0	Nickel	0001	1.7	ug/L	D	-	1		valid
GS59	SL	3/12/2007	07040826	7782-49-2	Selenium	N001	6	ug/L ug/L	D II	_	6		valid
GS59	SL	3/12/2007	07040826	7440-22-4		0001	1	ug/L ug/L	11	г -	4		
GS59	SL	3/12/2007	07040826	U-234	Silver Uranium-234	N001	0.723	pCi/L	U	Г	0.0958	0.129	valid valid
	SL					N001	0.723			г			valid
GS59 GS59	SL	3/12/2007 3/12/2007	07040826 07040826	U-235+236 U-238	Uranium-235/236	N001	0.484	pCi/L pCi/L	U	<u></u>	0.0614 0.0732	0.0328 0.099	valid
GS59	SL	3/12/2007	07040826	7440-66-6	Uranium-238	0001	0.484		ш	<u> </u>	0.0732	0.099	
					Zinc	_	2 077	ug/L	U	F	4		valid
GWISINFNORTH	TS TS	2/22/2007 2/22/2007	07020735	71-55-6 79-34-5	1,1,1-Trichloroethane	N001	0.677	ug/L	J	r	1		valid
GWISINFNORTH			07020735		1,1,2,2-Tetrachloroethane	N001	1	ug/L	U	F	4		valid
GWISINFNORTH	TS	2/22/2007	07020735	79-00-5	1,1,2-Trichloroethane	N001	1	ug/L	11	-	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	75-35-4	1,1-Dichloroethene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	120-82-1	1,2,4-Trichlorobenzene	N001	1	ug/L	U	F -	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	96-12-8	1,2-Dibromo-3-chloropropane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	106-93-4	1,2-Dibromoethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	95-50-1	1,2-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	107-06-2	1,2-Dichloroethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	78-87-5	1,2-Dichloropropane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	541-73-1	1,3-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	106-46-7	1,4-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	107-02-8	Acrolein	N001	5	ug/L	U	F	5		valid
GWISINFNORTH	TS	2/22/2007	07020735	107-13-1	Acrylonitrile	N001	5	ug/L	U	F	5		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-38-2	Arsenic	N001	6	ug/L	U	F	6		valid
GWISINFNORTH	TS	2/22/2007	07020735	71-43-2	Benzene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-42-8	Boron	N001	88.6	ug/L		F	10		valid
GWISINFNORTH	TS	2/22/2007	07020735	75-27-4	Bromodichloromethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	75-25-2	Bromoform	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	74-83-9	Bromomethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-43-9	Cadmium	0001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	56-23-5	Carbon tetrachloride	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	108-90-7	Chlorobenzene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	124-48-1	Chlorodibromomethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	67-66-3	Chloroform	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	74-87-3	Chloromethane	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	156-59-2	cis-1,2-Dichloroethene	N001	2.52	ug/L		F	1		valid

	T		L. A.B. BEGLUGIELGA	ı	1		1	1			Lacronion		I DATA WALIBATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
GWISINFNORTH	TS	2/22/2007	07020735	7440-50-8	Copper	0001	3	ug/L	U	F	3		valid
GWISINFNORTH	TS	2/22/2007	07020735	87-68-3	Hexachlorobutadiene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		valid
GWISINFNORTH	TS	2/22/2007	07020735	M&P XYLENE	m,p-Xylene	N001	2	ug/L	U	F	2		valid
GWISINFNORTH	TS	2/22/2007	07020735	7439-97-6	Mercury	N001	0.06	ug/L	UN	F	0.06		valid
GWISINFNORTH	TS	2/22/2007	07020735	75-09-2	Methylene chloride	N001	5	ug/L	U	F	5		valid
GWISINFNORTH	TS	2/22/2007	07020735	91-20-3	Naphthalene	N001	0.255	ug/L	BJ	F	1		U
GWISINFNORTH	TS	2/22/2007	07020735	7440-02-0	Nickel	0001	2.5	ug/L	В	F	1		U
GWISINFNORTH	TS	2/22/2007	07020735	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	0.01	mg/L	U	F	0.01		J
GWISINFNORTH	TS	2/22/2007	07020735	95-47-6	o-Xylene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7782-49-2	Selenium	N001	6	ug/L	U	F	6		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-22-4	Silver	0001	1	ug/L	U	F	1.000		valid
GWISINFNORTH	TS	2/22/2007	07020735	100-42-5	Styrene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	127-18-4	Tetrachloroethene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	108-88-3	Toluene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	100-41-4	Total Xylene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	156-60-5	trans-1,2-Dichloroethene	N001	1	ug/L	U	F	1.000		valid
GWISINFNORTH	TS	2/22/2007	07020735	10061-02-6	trans-1,3-dichloropropene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	79-01-6	Trichloroethene	N001	1	ug/L	U	F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	U-234	Uranium-234	N001	1.48	pCi/L		F	0.170	0.257	valid
GWISINFNORTH	TS	2/22/2007	07020735	U-235+236	Uranium-235/236	N001	0.0488	pCi/L	U	F	0.174	0.0576	valid
GWISINFNORTH	TS	2/22/2007	07020735	U-238	Uranium-238	N001	1.32	pCi/L		F	0.121	0.24	valid
GWISINFNORTH	TS	2/22/2007	07020735	75-01-4	Vinyl chloride	N001	1.03	ug/L		F	1		valid
GWISINFNORTH	TS	2/22/2007	07020735	7440-66-6	Zinc	0001	5.1	ug/L	В	F	2		U
P416589	WL	3/6/2007	07030756	71-55-6	1,1,1-Trichloroethane	N001	0.16	ug/L	U	F	0.16		J
P416589	WL	3/6/2007	07030756	79-34-5	1,1,2,2-Tetrachloroethane	N001	0.2	ug/L	U	F	0.2		valid
P416589	WL	3/6/2007	07030756	79-00-5	1,1,2-Trichloroethane	N001	0.32	ug/L	U	F	0.32		valid
P416589	WL	3/6/2007	07030756	75-35-4	1.1-Dichloroethene	N001	0.14	ug/L	U	F	0.14		valid
P416589	WL	3/6/2007	07030756	95-94-3	1,2,4,5-Tetrachlorobenzene	N001	2	ug/L	U	F	2		valid
P416589	WL	3/6/2007	07030756	120-82-1	1,2,4-Trichlorobenzene	N001	0.32	ug/L	U	F	0.32		valid
P416589	WL	3/6/2007	07030756	96-12-8	1,2-Dibromo-3-chloropropane	N001	1.5	ug/L	U	F	1.5		valid
P416589	WL	3/6/2007	07030756	106-93-4	1,2-Dibromoethane	N001	0.18	ug/L	U	F	0.18		valid
P416589	WL	3/6/2007	07030756	95-50-1	1,2-Dichlorobenzene	N001	0.13	ug/L	U	F	0.13		valid
P416589	WL	3/6/2007	07030756	107-06-2	1,2-Dichloroethane	N001	0.13	ug/L	U	F	0.13		valid
P416589	WL	3/6/2007	07030756	78-87-5	1,2-Dichloropropane	N001	0.13	ug/L	U	F	0.13		valid
P416589	WL	3/6/2007	07030756	122-66-7	1,2-Diphenylhydrazine	N001	0.64	ug/L	II	F	0.64		valid
P416589	WL	3/6/2007	07030756	541-73-1	1,3-Dichlorobenzene	N001	0.16	ug/L	U	F.	0.16		valid
P416589	WL	3/6/2007	07030756	106-46-7	1,4-Dichlorobenzene	N001	0.16	ug/L	U	F	0.16		valid
P416589	WL	3/6/2007	07030756	105-67-9	2, 4-Dimethylphenol	N001	0.57	ug/L	U	F	0.57		valid
P416589		3/6/2007	07030756	95-95-4	2,4,5-Trichlorophenol	N001	5	ug/L	U	F	5		valid
P416589	WL	3/6/2007	07030756	88-06-2	2,4,6-Trichlorophenol	N001	5	ug/L	Ū	F	5		valid
P416589	WL	3/6/2007	07030756	120-83-2	2,4-Dichlorophenol	N001	1.3	ug/L	U	F	1.3		valid
P416589	WL	3/6/2007	07030756	51-28-5	2,4-Dinitrophenol	N001	20	ug/L	U	F	20	1	valid
P416589	WL	3/6/2007	07030756	121-14-2	2,4-Dinitrotoluene	N001	5	ug/L	ŭ	F.	5		valid
P416589	WL	3/6/2007	07030756	606-20-2	2,6-Dinitrotoluene	N001	5	ug/L	U	F	5	1	valid
P416589	WL	3/6/2007	07030756	91-58-7	2-Chloronaphthalene	N001	1.7	ug/L	U	F	1.7		valid
P416589	WL	3/6/2007	07030756	95-57-8	2-Chlorophenol	N001	0.38	ug/L	U	F	0.38	1	valid
P416589	WL	3/6/2007	07030756	91-94-1	3.3'-Dichlorobenzidine	N001	2	ug/L	ii	F.	2		valid
P416589	WL	3/6/2007	07030756	534-52-1	4,6-Dinitro-2-methyl phenol	N001	20	ug/L	U	F	20	1	valid
P416589	WL	3/6/2007	07030756	59-50-7	4-Chloro-3-methylphenol	N001	5	ug/L	ii	F.	5		.1
P416589	WL	3/6/2007	07030756	100-02-7	4-Nitrophenol	N001	1.7	ug/L ug/L	ii	F	1.7		valid
P416589	WL	3/6/2007	07030756	83-32-9	Acenaphthene	N001	1.7	ug/L ug/L	11	F	1.7		I
P416589	WL	3/6/2007	07030756	107-02-8	Acrolein	N001	2.8	ug/L ug/L	U II	_	2.8		valid
P416589	WL	3/6/2007	07030756	107-02-8	Acrylonitrile	N001	1.4	ug/L ug/L	U	r F	1.4	1	valid
P416589	WL	3/6/2007	07030756	120-12-7	· ·	N001	1.4	_	11	-	1.4	1	vallu I
P416589 P416589	WL	3/6/2007	07030756	56-55-3	Anthracene	N001 N001	1.9	ug/L	11	-			valid
	WL				Benz(a)anthracene			ug/L	11	I	1.7		valid
P416589		3/6/2007	07030756	71-43-2	Benzene	N001	0.16	ug/L	11	r	0.16	-	valid
P416589	WL	3/6/2007	07030756	92-87-5	Benzidine	N001	50	ug/L	U	Г	50	1	valid

	1	1	LAB DECLUCITION	1				T	LAB	CAMPLE	DETECTION	LINICED	DATA VALIDATION
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	TYPE	DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
P416589	WL	3/6/2007	07030756	50-32-8	Benzo(a)pyrene	N001	1.3	ug/L	U	F	1.300	17411111	valid
P416589	WL	3/6/2007	07030756	205-99-2	Benzo(b)fluoranthene	N001	0.39	ug/L	U	F	0.39		valid
P416589	WL	3/6/2007	07030756	191-24-2	Benzo(g,h,i)Perylene	N001	1	ug/L	U	F	1		valid
P416589	WL	3/6/2007	07030756	207-08-9	Benzo(k)fluoranthene	N001	0.46	ug/L	U	F	0.46		valid
P416589	WL	3/6/2007	07030756	111-44-4	Bis(2-chloroethyl) ether	N001	3.9	ug/L	U	F	3.9		valid
P416589	WL	3/6/2007	07030756	108-60-1	Bis(2-chloroisopropyl) ether	N001	0.43	ug/L	II	F	0.43		valid
P416589	WL	3/6/2007	07030756	117-81-7	Bis(2-ethylhexyl) phthalate	N001	5	ug/L	11	F	5		valid
P416589	WL	3/6/2007	07030756	75-27-4	Bromodichloromethane	N001	0.17	ug/L	U	F	0.17		valid
P416589	WL	3/6/2007	07030756	75-25-2	Bromoform	N001	0.17	ug/L	III	F	0.17		valid
P416589	WL	3/6/2007	07030756	74-83-9	Bromomethane	N001	0.19	ug/L	11	<u> </u>	0.19		valid
P416589	WL	3/6/2007	07030756	85-68-7	Butyl benzyl phthalate	N001	5	ug/L	U		5		valid
P416589	WL	3/6/2007	07030756	7440-43-9	Cadmium	0001	0.8	ug/L	D	г -	0.45		valid
P416589	WL	3/6/2007	07030756	56-23-5		N001	0.19		IJ	г =	0.43		valiu
	WL				Carbon tetrachloride	_	0.19	ug/L	U	г -			المانط
P416589		3/6/2007	07030756	108-90-7	Chlorobenzene	N001		ug/L	U II	F	0.17		valid valid
P416589	WL	3/6/2007	07030756	124-48-1	Chlorodibromomethane	N001	0.17	ug/L	U II	F	0.17		
P416589	WL	3/6/2007	07030756	67-66-3	Chloroform	N001	0.16	ug/L	U	F	0.16		valid
P416589	WL	3/6/2007	07030756	74-87-3	Chloromethane	N001	0.3	ug/L	U	F	0.3		valid
P416589	WL	3/6/2007	07030756	218-01-9	Chrysene	N001	1	ug/L	U	F	1		valid
P416589	WL	3/6/2007	07030756	156-59-2	cis-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
P416589	WL	3/6/2007	07030756	7440-50-8	Copper	0001	4.5	ug/L	U	F	4.5		valid
P416589	WL	3/6/2007	07030756	53-70-3	Dibenz(a,h)anthracene	N001	1.4	ug/L	U	F	1.4		valid
P416589	WL	3/6/2007	07030756	84-66-2	Diethyl phthalate	N001	5	ug/L	U	F	5		valid
P416589	WL	3/6/2007	07030756	131-11-3	Dimethyl phthalate	N001	5	ug/L	U	F	5.000		valid
P416589	WL	3/6/2007	07030756	84-74-2	Di-n-butyl phthalate	N001	5	ug/L	U	F	5		valid
P416589	WL	3/6/2007	07030756	206-44-0	Fluoranthene	N001	5	ug/L	U	F	5.000		valid
P416589	WL	3/6/2007	07030756	86-73-7	Fluorene	N001	1	ug/L	U	F	1.000		valid
P416589	WL	3/6/2007	07030756	118-74-1	Hexachlorobenzene	N001	2.1	ug/L	U	F	2.1		valid
P416589	WL	3/6/2007	07030756	87-68-3	Hexachlorobutadiene	N001	0.12	ug/L	U	F	0.12		valid
P416589	WL	3/6/2007	07030756	77-47-4	Hexachlorocyclopentadiene	N001	1.5	ug/L	U	F	1.500		valid
P416589	WL	3/6/2007	07030756	67-72-1	Hexachloroethane	N001	0.46	ug/L	U	F	0.460		valid
P416589	WL	3/6/2007	07030756	193-39-5	Indeno(1,2,3-cd)pyrene	N001	1.5	ug/L	U	F	1.5		valid
P416589	WL	3/6/2007	07030756	78-59-1	Isophorone	N001	1.5	ug/L	U	F	1.5		valid
P416589	WL	3/6/2007	07030756	7439-92-1	Lead	0001	2.6	ug/L	U	F	2.6		valid
P416589	WL	3/6/2007	07030756	M&P XYLENE	m,p-Xylene	N001	0.34	ug/L	U	F	0.34		valid
P416589	WL	3/6/2007	07030756	75-09-2	Methylene chloride	N001	0.4	ug/L	JB	F	0.32		U
P416589	WL	3/6/2007	07030756	91-20-3	Naphthalene	N001	0.22	ug/L	11	F	0.22		valid
P416589	WL	3/6/2007	07030756	7440-02-0	Nickel	0001	7.8	ug/L	II	F	7.8		valid
P416589	WL	3/6/2007	07030756	98-95-3	Nitrobenzene	N001	5	ug/L	II	F	5		valid
P416589	WL	3/6/2007	07030756	924-16-3	N-Nitrosodibutylamine	N001	2	ug/L	U	F	2.000		valid
P416589	WL	3/6/2007	07030756	55-18-5	N-Nitrosodiethylamine	N001	1.1	ug/L	II	F	1.1		valid
P416589	WL	3/6/2007	07030756	62-75-9	N-Nitrosodimethylamine	N001	1.6	ug/L	III	-	1.6		valid
P416589	WL	3/6/2007	07030756	621-64-7	N-Nitrosodi-n-propylamine	N001	5	ug/L	11	<u> </u>	5.000		valid
P416589	WL	3/6/2007	07030756	86-30-6	N-Nitrosodiphenylamine	N001	0.44	ug/L ug/L	U		0.44		valid
P416589	WL	3/6/2007	07030756	930-55-2	N-Nitrosogyrrolidine	N001	0.8	ug/L ug/L	11	г -	0.44		valid
P416589	WL	3/6/2007	07030756	95-47-6		N001	0.19	Ü	II	-	0.190		valid
					o-Xylene		0.19	ug/L	U	F	0.190		
P416589	WL	3/6/2007	07030756	56-38-2	Parathion, ethyl	N001	2	ug/L	U	F	2		valid
P416589	WL	3/6/2007	07030756	608-93-5	Pentachlorobenzene	N001	2	ug/L	U	-	2		valid
P416589	WL	3/6/2007	07030756	87-86-5	Pentachlorophenol	N001	20	ug/L	U	F	20		valid
P416589	WL	3/6/2007	07030756	108-95-2	Phenol	N001	1.4	ug/L	U	F _	1.4		valid
P416589	WL	3/6/2007	07030756	129-00-0	Pyrene	N001	0.37	ug/L	U	F	0.37		J
P416589	WL	3/6/2007	07030756	7440-22-4	Silver	0001	2.8	ug/L	U	F	2.8		valid
P416589	WL	3/6/2007	07030756	100-42-5	Styrene	N001	0.17	ug/L	U	F	0.170		valid
P416589	WL	3/6/2007	07030756	127-18-4	Tetrachloroethene	N001	0.2	ug/L	U	F	0.200		J
P416589	WL	3/6/2007	07030756	108-88-3	Toluene	N001	0.17	ug/L	U	F	0.17		valid
P416589	WL	3/6/2007	07030756	100-41-4	Total Xylene	N001	0.16	ug/L	U	F	0.16		valid
P416589	WL	3/6/2007	07030756	156-60-5	trans-1,2-Dichloroethene	N001	0.15	ug/L	U	F	0.15		valid
P416589	WL	3/6/2007	07030756	10061-02-6	trans-1,3-dichloropropene	N001	0.19	ug/L	U	F	0.190		valid
P416589	WL	3/6/2007	07030756	79-01-6	Trichloroethene	N001	0.16	ug/L	U	F	0.160		valid

Appendix A
Analytical Results for Water Samples - First Quarter of CY 2007

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION
P416589	WL	3/6/2007	07030756	7440-61-1	Uranium	0001	31	ug/L	В	F	16		valid
P416589	WL	3/6/2007	07030756	75-01-4	Vinyl chloride	N001	0.17	ug/L	U	F	0.17		valid
P416589	WL	3/6/2007	07030756	7440-66-6	Zinc	0001	40	ug/L		F	4.5		U
PLFSEEPINF	TS	2/22/2007	07020735	71-55-6	1,1,1-Trichloroethane	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	79-34-5	1,1,2,2-Tetrachloroethane	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	79-00-5	1,1,2-Trichloroethane	N001	1	ug/L	U	F	1.000		valid
PLFSEEPINF	TS	2/22/2007	07020735	75-35-4	1,1-Dichloroethene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	120-82-1	1,2,4-Trichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	96-12-8	1,2-Dibromo-3-chloropropane	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	106-93-4	1,2-Dibromoethane	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	95-50-1	1,2-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	107-06-2	1,2-Dichloroethane	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	78-87-5	1,2-Dichloropropane	N001	1		U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	541-73-1	1,3-Dichlorobenzene	N001	1	_	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	106-46-7	1,4-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	107-02-8	Acrolein	N001	5	ug/L	U	F	5		valid
PLFSEEPINF	TS	2/22/2007	07020735	107-13-1	Acrylonitrile	N001	5	ug/L	U	F	5		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-38-2	Arsenic	N001	6	ug/L	U	F	6		valid
PLFSEEPINF	TS	2/22/2007	07020735	71-43-2	Benzene	N001	0.356	ug/L	J	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-41-7	Beryllium	N001	1	_	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-42-8	Boron	N001	1920	ug/L		F.	10		valid
PLFSEEPINF	TS	2/22/2007	07020735	75-27-4	Bromodichloromethane	N001	1	Ŭ	П	F	10		valid
PLFSEEPINF	TS	2/22/2007	07020735	75-25-2	Bromoform	N001	1	Ŭ	U		1		valid
PLFSEEPINF	TS	2/22/2007	07020735	74-83-9	Bromomethane	N001	1	ug/L ug/L	11	Г	1		valid
PLFSEEPINF	TS						1	Ü	0	г -	1		
		2/22/2007	07020735	7440-43-9	Cadmium	0001 N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	56-23-5	Carbon tetrachloride		1	. 5	II	F	4		valid
PLFSEEPINF	TS	2/22/2007	07020735	108-90-7	Chlorobenzene	N001	1	ug/L	O	-	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	124-48-1	Chlorodibromomethane	N001	1	3	U	-	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	67-66-3	Chloroform	N001	1	ug/L	U	-	1.000		valid
PLFSEEPINF	TS	2/22/2007	07020735	74-87-3	Chloromethane	N001	1	3	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	156-59-2	cis-1,2-Dichloroethene	N001	1	ug/L	U	F	1.000		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-50-8	Copper	0001	3	3	U	F	3		valid
PLFSEEPINF	TS	2/22/2007	07020735	87-68-3	Hexachlorobutadiene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7439-92-1	Lead	0001	3.9	Ü	В	F	2.5		valid
PLFSEEPINF	TS	2/22/2007	07020735	M&P XYLENE	m,p-Xylene	N001	0.518	ug/L	J	F	2		valid
PLFSEEPINF	TS	2/22/2007	07020735	7439-97-6	Mercury	N001	0.06		UN	F	0.06		valid
PLFSEEPINF	TS	2/22/2007	07020735	75-09-2	Methylene chloride	N001	5	ug/L	U	F	5		valid
PLFSEEPINF	TS	2/22/2007	07020735	91-20-3	Naphthalene	N001	1.74	ug/ L	В	F	1		U
PLFSEEPINF	TS	2/22/2007	07020735	7440-02-0	Nickel	0001	7.2	ug/L	В	F	1		U
PLFSEEPINF	TS	2/22/2007	07020735	95-47-6	o-Xylene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7782-49-2	Selenium	N001	6	ug/L	U	F	6		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-22-4	Silver	0001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	100-42-5	Styrene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	127-18-4	Tetrachloroethene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	108-88-3	Toluene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	100-41-4	Total Xylene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	156-60-5	trans-1,2-Dichloroethene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	10061-02-6	trans-1,3-dichloropropene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	79-01-6	Trichloroethene	N001	1	ug/L	U	F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	U-234	Uranium-234	N001	1.91	pCi/L		F	0.157	0.297	valid
PLFSEEPINF	TS	2/22/2007	07020735	U-235+236	Uranium-235/236	N001	0.0812	pCi/L	U	F	0.161	0.0689	valid
PLFSEEPINF	TS	2/22/2007	07020735	U-238	Uranium-238	N001	1.38	pCi/L	-	F	0.112	0.238	valid
PLFSEEPINF	TS	2/22/2007	07020735	75-01-4	Vinyl chloride	N001	1.31	ug/L		F	1		valid
PLFSEEPINF	TS	2/22/2007	07020735	7440-66-6	Zinc	0001	30.8	ug/L		F	2		valid
PLFSYSEFF	TS	2/22/2007	07020735	71-55-6	1,1,1-Trichloroethane	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	79-34-5	1,1,2,2-Tetrachloroethane	N001	1	ug/L	T II	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	79-00-5	1,1,2-Trichloroethane	N001	ti –		U II	-	ł:	 	valid

Appendix A
Analytical Results for Water Samples - First Quarter of CY 2007

LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
PLFSYSEFF	TS	2/22/2007	07020735	75-35-4	1,1-Dichloroethene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	95-94-3	1,2,4,5-Tetrachlorobenzene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	120-82-1	1,2,4-Trichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	96-12-8	1,2-Dibromo-3-chloropropane	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	106-93-4	1,2-Dibromoethane	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	95-50-1	1,2-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	107-06-2	1,2-Dichloroethane	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	78-87-5	1,2-Dichloropropane	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	122-66-7	1,2-Diphenylhydrazine	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	541-73-1	1,3-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	106-46-7	1,4-Dichlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	105-67-9	2, 4-Dimethylphenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	95-95-4	2,4,5-Trichlorophenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	88-06-2	2,4,6-Trichlorophenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	120-83-2	2,4-Dichlorophenol	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	51-28-5	2,4-Dinitrophenol	N001	21.7	ug/L	U	F	21.7		valid
PLFSYSEFF	TS	2/22/2007	07020735	121-14-2	2,4-Dinitrotoluene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	606-20-2	2,6-Dinitrotoluene	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	91-58-7	2-Chloronaphthalene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	95-57-8	2-Chlorophenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	91-94-1	3,3'-Dichlorobenzidine	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	534-52-1	4,6-Dinitro-2-methyl phenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	59-50-7	4-Chloro-3-methylphenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	100-02-7	4-Nitrophenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	83-32-9	Acenaphthene	N001	0.423	ug/L	J	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	107-02-8	Acrolein	N001	5	ug/L	U	F	5		valid
PLFSYSEFF	TS	2/22/2007	07020735	107-13-1	Acrylonitrile	N001	5	ug/L	U	F	5		valid
PLFSYSEFF	TS	2/22/2007	07020735	120-12-7	Anthracene	N001	1.09	ug/L	U	F	1.090		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-38-2	Arsenic	N001	6	ug/L	U	F	6.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	56-55-3	Benz(a)anthracene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	71-43-2	Benzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	92-87-5	Benzidine	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	50-32-8	Benzo(a)pyrene	N001	1.09	ug/L	U	F	1.090		valid
PLFSYSEFF	TS	2/22/2007	07020735	205-99-2	Benzo(b)fluoranthene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	191-24-2	Benzo(g,h,i)Perylene	N001	1.09	ug/L	U	F	1.090		valid
PLFSYSEFF	TS	2/22/2007	07020735	207-08-9	Benzo(k)fluoranthene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-41-7	Bervllium	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	111-44-4	Bis(2-chloroethyl) ether	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	108-60-1	Bis(2-chloroisopropyl) ether	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	117-81-7	Bis(2-ethylhexyl) phthalate	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-42-8	Boron	N001	626	ug/L		F	10.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	75-27-4	Bromodichloromethane	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	75-25-2	Bromoform	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	74-83-9	Bromomethane	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	85-68-7	Butyl benzyl phthalate	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-43-9	Cadmium	0001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	56-23-5	Carbon tetrachloride	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	108-90-7	Chlorobenzene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	124-48-1	Chlorodibromomethane	N001	1	ug/L	U	F.	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	67-66-3	Chloroform	N001	1	ug/L	Ü	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	74-87-3	Chloromethane	N001	1	ug/L	IJ	F.	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-47-3	Chromium	N001	1	ug/L	11	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	218-01-9	Chrysene	N001	1.09	ug/L ug/L	IJ	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	156-59-2	cis-1,2-Dichloroethene	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-50-8	Copper	0001	3	ug/L	ii	F	3		valid
PLFSYSEFF	TS	2/22/2007	07020735	53-70-3	Dibenz(a,h)anthracene	N001	1.09	ug/L ug/L	ii	r F	1.09		valid
	TS	2/22/2007	07020735	84-66-2	Diethyl phthalate	N001	10.9	ug/L ug/L	IJ	r F	10.9		valid
PLFSYSEFF													

Appendix A
Analytical Results for Water Samples - First Quarter of CY 2007

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
PLFSYSEFF	TS	2/22/2007	07020735	84-74-2	Di-n-butyl phthalate	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	206-44-0	Fluoranthene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	86-73-7	Fluorene	N001	0.257	ug/L	J	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	118-74-1	Hexachlorobenzene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	87-68-3	Hexachlorobutadiene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	77-47-4	Hexachlorocyclopentadiene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	67-72-1	Hexachloroethane	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	193-39-5	Indeno(1,2,3-cd)pyrene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	78-59-1	Isophorone	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	7439-92-1	Lead	0001	2.5	ug/L	U	F	2.5		valid
PLFSYSEFF	TS	2/22/2007	07020735	M&P XYLENE	m,p-Xylene	N001	2	ug/L	U	F	2		valid
PLFSYSEFF	TS	2/22/2007	07020735	7439-97-6	Mercury	N001	0.06	ug/L	UN	F	0.06		J
PLFSYSEFF	TS	2/22/2007	07020735	75-09-2	Methylene chloride	N001	5	ug/L	U	F	5		valid
PLFSYSEFF	TS	2/22/2007	07020735	91-20-3	Naphthalene	N001	0.586	ug/L	BJ	F	1		U
PLFSYSEFF	TS	2/22/2007	07020735	7440-02-0	Nickel	0001	7.8	ug/L	В	F	1		U
PLFSYSEFF	TS	2/22/2007	07020735	98-95-3	Nitrobenzene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	924-16-3	N-Nitrosodibutylamine	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	55-18-5	N-Nitrosodiethylamine	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	62-75-9	N-Nitrosodimethylamine	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007	07020735	621-64-7	N-Nitrosodi-n-propylamine	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007		930-55-2	N-Nitrosopyrrolidine	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	95-47-6	o-Xylene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	56-38-2	Parathion, ethyl	N001	10.9	ug/L	U	F	10.900		valid
PLFSYSEFF	TS	2/22/2007		608-93-5	Pentachlorobenzene	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	87-86-5	Pentachlorophenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	108-95-2	Phenol	N001	10.9	ug/L	U	F	10.9		valid
PLFSYSEFF	TS	2/22/2007	07020735	129-00-0	Pyrene	N001	1.09	ug/L	U	F	1.09		valid
PLFSYSEFF	TS	2/22/2007	07020735	7782-49-2	Selenium	N001	6	ug/L	U	F	6		valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-22-4	Silver	0001	1	ug/L	U	F.	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	100-42-5	Styrene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	127-18-4	Tetrachloroethene	N001	1	ug/L	U	F.	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	108-88-3	Toluene	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	100-41-4	Total Xylene	N001	1	ug/L	U	F	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	156-60-5	trans-1,2-Dichloroethene	N001	1	ug/L	IJ	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	10061-02-6	trans-1,3-dichloropropene	N001	1	ug/L	U	F	1		valid
PLFSYSEFF	TS	2/22/2007	07020735	79-01-6	Trichloroethene	N001	1	ug/L	11	-	1.000		valid
PLFSYSEFF	TS	2/22/2007	07020735	U-234	Uranium-234	N001	2.05	pCi/L	0	F	0.137	0.299	valid
PLFSYSEFF	TS	2/22/2007	07020735	U-235+236	Uranium-235/236	N001	0.0472	pCi/L	11	F	0.14	0.0691	valid
PLFSYSEFF	TS	2/22/2007	07020735	U-238	Uranium-238	N001	1.48	pCi/L		F	0.0975	0.241	valid
PLFSYSEFF	TS	2/22/2007	07020735	75-01-4	Vinyl chloride	N001	1	ug/L	U	F	1.000	0.241	valid
PLFSYSEFF	TS	2/22/2007	07020735	7440-66-6	Zinc	0001	7.9	ug/L ug/L	B	F.	2		II
PLFSYSEFF	TS	3/6/2007	07030773	7782-49-2	Selenium	N001	0.93	ug/L ug/L		F.	0.7		valid
SPIN	TS	1/11/2007	07010656	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	230	mg/L	+	F.	1.9	1	valid
SPIN	TS	1/11/2007	07010656	7440-61-1	Uranium	N001	39	ug/L	+	F	0.04	1	valid
SPIN	TS	2/15/2007	07020727	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	210	mg/L	+	F.	1.900	1	valid
SPIN	TS	2/15/2007	07020727	7440-61-1	Uranium	N001	39	ug/L	 	r F	0.02		valid
SPIN	TS	3/6/2007	07030773	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	210	mg/L	 	F	1.900		valid
SPIN	TS	3/6/2007	07030773	7440-61-1	Uranium	N001	41	ug/L	 	F	0.02		valid
SPIN	TS	3/19/2007	07030773	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	210	mg/L	 	F	1.9		valid
SPIN	TS	3/19/2007	07030793	7440-61-1	Uranium	N001	42	ug/L	 	-	0.02		valid
SPPDISCHARGEGALLERY	TS	1/11/2007	07010656	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	270	mg/L	 	F	1.9		valid
	TS				·		44		+	 -	0.04		valid
SPPDISCHARGEGALLERY SPPDISCHARGEGALLERY		1/11/2007	07010656	7440-61-1	Uranium Nitroto - Nitrito ao Nitrogan	N001		ug/L	 	r c		-	valid
	TS	2/15/2007	07020727	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	520	mg/L	_	[F	1.9		
SPPDISCHARGEGALLERY	TS	2/15/2007	07020727	7440-61-1	Uranium	N001	72	ug/L	-	F	0.02		valid
SPPDISCHARGEGALLERY	TS	3/6/2007	07030773	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	460	mg/L	 	r	1.9		valid
SPPDISCHARGEGALLERY	TS	3/6/2007	07030773	7440-61-1	Uranium	N001	73	ug/L	 	r	0.02		valid
SPPDISCHARGEGALLERY	TS	3/19/2007	07030793	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	560	mg/L	 	-	1.9		valid
SPPDISCHARGEGALLERY	TS	3/19/2007	07030793	7440-61-1	Uranium	N001	90	ug/L	1	F	0.02	l	valid

	1		LAD DECLUCITION		1	1		$\overline{}$	LAB	CAMDLE	DETECTION	IINCED.	DATA VALIDATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	LAB REQUISITION NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	LAB QUALIFIERS	TYPE	LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS
SPPMM01	TS	1/11/2007	07010656	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	5.4	mg/L		F	0.019		valid
SPPMM01	TS	1/11/2007	07010656	7440-61-1	Uranium	N001	2.9	ug/L		F	0.02		valid
SPPMM01	TS	2/15/2007	07020727	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	21	mg/L		F	0.19		valid
SPPMM01	TS	2/15/2007	07020727	7440-61-1	Uranium	N001	6.4	ug/L		F	0.02		valid
SPPMM01	TS	3/6/2007	07030773	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	3.4	mg/L		F	0.019		valid
SPPMM01	TS	3/6/2007	07030773	7440-61-1	Uranium	N001	2	ug/L		F	0.02		valid
SPPMM01	TS	3/19/2007	07030793	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N001	19	mg/L		F	0.096		valid
SPPMM01	TS	3/19/2007	07030793	7440-61-1	Uranium	N001	16	ug/L		F	0.02		valid
SW018	SL	1/10/2007	07030788	AM-241	Americium-241	N001	0.000863	pCi/L	U	F	0.0285	0.0114	valid
SW018	SL	1/10/2007	07030788	PU-239,240	Plutonium-239, 240	N001	0.00425	pCi/L	U	F	0.0252	0.0156	valid
SW018	SL	2/26/2007	07040826	AM-241	Americium-241	N001	0.00426	pCi/L	U	F	0.0251	0.00944	valid
SW018	SL	2/26/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.00156	pCi/L	U	F	0.0286	0.00842	valid
SW027	SL	2/21/2007	07050876	AM-241	Americium-241	N001	0.0398	pCi/L	U	F	0.0421	0.0215	valid
SW027	SL	2/21/2007	07050876	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
SW027	SL	2/21/2007	07050876	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
SW027	SL	2/21/2007	07050876	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
SW027	SL	2/21/2007	07050876	HARDNESS	Hardness	N001	133	mg/L		F	1		valid
SW027	SL	2/21/2007	07050876	PU-239,240	Plutonium-239, 240	N001	0.092	pCi/L		F	0.0257	0.0245	valid
SW027	SL	2/21/2007	07050876	7440-22-4	Silver	0001	0.2	ug/L	U	F	0.2		valid
SW027	SL	2/21/2007	07050876	U-234	Uranium-234	N001	1.01	pCi/L		F	0.16	0.192	valid
SW027	SL	2/21/2007	07050876	U-235+236	Uranium-235/236	N001	0.116	pCi/L		F	0.0947	0.0617	J
SW027	SL	2/21/2007	07050876	U-238	Uranium-238	N001	0.916	pCi/L		F	0.15	0.177	valid
SW093	SL	2/6/2007	07020718	AM-241	Americium-241	N001	0.00767	pCi/L	U	F	0.0215	0.0105	valid
SW093	SL	2/6/2007	07020718	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
SW093	SL	2/6/2007	07020718	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
SW093	SL	2/6/2007	07020718	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
SW093	SL	2/6/2007	07020718	HARDNESS	Hardness	N001	199	mg/L		F	5		valid
SW093	SL	2/6/2007	07020718	PU-239,240	Plutonium-239, 240	N001	0.0293	pCi/L		F	0.0112	0.0146	J
SW093	SL	2/6/2007	07020718	7440-22-4	Silver	0001	0.2	ug/L	U	F	0.2		valid
SW093	SL	2/6/2007	07020718	TSS	Total Suspended Solids	N001	35.8	mg/L		F	4.75		valid
SW093	SL	2/6/2007	07020718	U-234	Uranium-234	N001	1.26	pCi/L		F	0.144	0.229	valid
SW093	SL	2/6/2007	07020718	U-235+236	Uranium-235/236	N001	0.0826	pCi/L	U	F	0.147	0.0654	valid
SW093	SL	2/6/2007	07020718	U-238	Uranium-238	N001	1.04	pCi/L		F	0.102	0.201	valid
SW093	SL	2/8/2007	07020731	AM-241	Americium-241	N001	-1.95E-06	pCi/L	U	F	0.0211	0.0089	valid
SW093	SL	2/8/2007	07020731	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
SW093	SL	2/8/2007	07020731	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
SW093	SL	2/8/2007	07020731	7440-47-3	Chromium	N001	1	ug/L	U	F	1		valid
SW093	SL	2/8/2007	07020731	HARDNESS	Hardness	N001	199	mg/L		F	1		valid
SW093	SL	2/8/2007	07020731	PU-239,240	Plutonium-239, 240	N001	0.00881	pCi/L	U	F	0.0134	0.00776	valid
SW093	SL	2/8/2007	07020731	7440-22-4	Silver	0001	0.2	ug/L	U	F	0.2		valid
SW093	SL	2/8/2007	07020731	U-234	Uranium-234	N001	1.28	pCi/L		F	0.0498	0.181	valid
SW093	SL	2/8/2007	07020731	U-235+236	Uranium-235/236	N001	0.0372	pCi/L	U	F	0.051	0.0207	valid
SW093	SL	2/8/2007	07020731	U-238	Uranium-238	N001	0.966	pCi/L		F	0.0355	0.144	valid
SW093	SL	2/19/2007	07040826	AM-241	Americium-241	N001	0.0204	pCi/L	U	F	0.026	0.011	valid
SW093	SL	2/19/2007	07040826	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
SW093	SL	2/19/2007	07040826	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
SW093	SL	2/19/2007	07040826	7440-47-3	Chromium	N001	1.2	ug/L	В	F	1		valid
SW093	SL	2/19/2007	07040826	HARDNESS	Hardness	N001	216	mg/L		F	2		valid
SW093	SL	2/19/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.00347	pCi/L	U	F	0.0262	0.00962	valid
SW093	SL	2/19/2007	07040826	7440-22-4	Silver	0001	0.2	ug/L	U	F	0.2		valid
SW093	SL	2/19/2007	07040826	U-234	Uranium-234	N001	1.74	pCi/L		F	0.0742	0.243	valid
SW093	SL	2/19/2007	07040826	U-235+236	Uranium-235/236	N001	0.0563	pCi/L		F	0.0476	0.0305	J
SW093	SL	2/19/2007	07040826	U-238	Uranium-238	N001	1.23	pCi/L		F	0.0567	0.185	valid
SW093	SL	3/15/2007	07040826	AM-241	Americium-241	N001	0.0161	pCi/L	U	F	0.0244	0.0102	valid
SW093	SL	3/15/2007	07040826	7440-41-7	Beryllium	N001	1	ug/L	U	F	1		valid
SW093	SL	3/15/2007	07040826	7440-43-9	Cadmium	0001	0.1	ug/L	U	F	0.1		valid
SW093	SL	3/15/2007	07040826	7440-47-3	Chromium	N001	1.9	ug/L	В	F	1		valid
SW093	SL	3/15/2007	07040826	HARDNESS	Hardness	N001	282	mg/L		F	2	l	valid

			LAB REQUISITION						LAB	SAMPLE	DETECTION	UNCER-	DATA VALIDATION
LOCATION_CODE	LOCATION_TYPE	DATE SAMPLED	NUMBER	CAS	ANALYTE	SAMPLE ID	RESULT	UNITS	QUALIFIERS	TYPE	LIMIT	TAINTY	QUALIFIERS
SW093	SL	3/15/2007	07040826	PU-239,240	Plutonium-239, 240	N001	0.0154	pCi/L	U	F	0.026	0.0102	valid
SW093	SL	3/15/2007	07040826	7440-22-4	Silver	0001	0.2	ug/L	U	F	0.2		valid
SW093	SL	3/15/2007	07040826	U-234	Uranium-234	N001	2.69	pCi/L		F	0.0674	0.315	valid
SW093	SL	3/15/2007	07040826	U-235+236	Uranium-235/236	N001	0.0963	pCi/L		F	0.0432	0.0348	J
SW093	SL	3/15/2007	07040826	U-238	Uranium-238	N001	1.99	pCi/L		F	0.0515	0.243	valid

EXPLANATION

SA	M	PL	E.	ID

N00x = Sample was not filtered. 000x = Sample was filtered.

WATER_UNIT_OF_MEASURE

mg/L; ppm = milligrams per liter
pCi/L = picocuries per liter
ug/L = micrograms per liter
C = degrees celsius
mS/cm = milliSiemens per centimeter
NTU = normal turbidity units
s.u. = standard pH units
uS/cm = microSiemens per centimeter
umhos/cm = microSiemens per centimeter

SAMPLE TYPE

F = Field Sample D = Duplicate

DATA_VALIDATION_QUALIFIERS

valid

F	Low flow sampling method used.
G	Possible grout contamination, pH > 9.
J	Estimated value.
L	Less than 3 bore volumes purged prior to sampling.
Q	Qualitative result due to sampling technique
R	Unusable result.
U	Parameter analyzed for but was not detected.
X	Location is undefined.
999	Validation not complete

Result is valid.

LAB_QUALIFIERS

В

- * Replicate analysis not within control limits.
 - Correlation coefficient for MSA < 0.995.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
 - Inorganic: Result is between the IDL and CRDL. Organic & Radiochemistry: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- P > 25% difference in detected pesticide or Arochlor concentrations between 2 columns.
- S Result determined by method of standard addition (MSA).
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Y Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Z Laboratory defined (USEPA CLP organic) qualifier, see case narrative.

LOCATION_TYPE

SL SURFACE LOCATION
TS TREATMENT SYSTEM

WL WELL

Appendix B

Information for Composite Samples with Unavailable Data

(Data for all composite samples were available for this report)

Appendix C Landfill Inspection Forms

ORIGINAL LANDFILL – MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

	SI	UBSIDENCE / CONSC	DLIDATION	
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	OTHER (DESCRIBE BELOW)
COVER – WEST	☐ Yes ☑ No	☐ Yes 🔀 No	☐ Yes ⋈ No	NIA
COVER – EAST	☐ Yes ☑ No	☐ Yes ☒ No	☐ Yes 🖾 No	N/A
BUTTRESS FILL	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	NIA
DIVERSION BERM 1	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	NIA
DIVERSION BERM 2	☐ Yes 🔀 No	☐ Yes ☑ No	☐ Yes ☑ No	~14
DIVERSION BERM 3	☐ Yes 📈 No	☐ Yes 🔲 No	☐ Yes 🕢 No	~/A
DIVERSION BERM 4	☐ Yes ⊠ No	Yes No	☐ Yes ☒ No	NA
DIVERSION BERM 5	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☒ No	10 min 10
DIVERSION BERM 6	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	N/A
DIVERSION BERM 7	Yes No	Yes No	☐ Yes ☑ No	N/A
NANCE REQUIRED / COMME	NTC			= 100 Francest end of

Yes No	CIRCULAR FAILURE?	FAILURE?
L LA	Yes 🔀 No	No
Yes No	☐ Yes ☑ No	
☐ Yes ☑ No	☐ Yes ☑ No	No
☐ Yes ⊠ No	☐ Yes ☑ No	No
Yes No	Yes No	× 30°
Yes 🗷 No	☐ Yes 🗵 No	No
red		No
	☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No

		VEGETATION		
REGION	CONDITION OF GRASS	UNWANTED VEGETATION PRESENT*?	PERCENTAGE OF GRASS VERSUS BARE GROUND?	PERCENTAGE OF UNWANTED VEGETATION?
COVER- WEST	1	Yes No		
COVER - EAST		☐ Yes ☐ No		
DIVERSION BERM 1		☐ Yes ☐ No		
DIVERSION BERM 2		☐ Yes ☐ No		
DIVERSION BERM 3		☐ Yes ☐ No		
DIVERSION BERM 4	11	Yes No		And the second s
DIVERSION BERM 5	-	Yes No		
DIVERSION BERM 6	\	Yes No		1
DIVERSION BERM 7	1	☐ Yes ☐ No		and the same of th
WEST PERIMETER CHANNEL	1	Yes No		-
EAST PERIMETER CHANNEL		☐ Yes ☐ No		
UPPER BUTTERESS FILL SIDESLOPE	1	Yes No		
LOWER BUTTRESS FILL SIDESLPOE		Yes No		
 Unwanted vegetation includes weeds and deep-rooting 	trees.			the control of the co
ADITENANCE DECLUDES		#		
AINTENANCE REQUIRED / COMMENTS				
A regetation inspection	was no	+ done +	his month.	TL 1. 0-111
is covered in snow a				
F = 1 1 1 1		2 1) 001.	3 a quarter	y requirement
FUT Vegetation SUT	veg; at	- the o	LF this tim	
				3

STORMWA	TER	MANAGEMENT	STRUCTURES
O T O TATLE !!!!	TITIL	THE TAXABLE IN THE	SINCLIONES

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM I	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	Yes No	☐ Yes 🔀 No	Yes No	☐ Yes ⋈ No
DIVERSION BERM 2	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	☐ Yes 🗶 No	Yes No	☐ Yes ☒ No	☐ Yes ☑ No
DIVERSION BERM 3	☐ Yes ☑ No	Yes 🗵 No	Yes No	☐ Yes 🔀 No	☐ Yes ☑ No	Yes No	☐ Yes ☑ No
DIVERSION BERM 4	☐ Yes ☑ No	☐ Yes 📈 No	Yes No	Yes No	Yes No	☐ Yes 🔛 No	☐ Yes ☑ No
DIVERSION BERM 5	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	Yes No	☐ Yes ☑ No	Yes No	☐ Yes ⊠ No
DIVERSION BERM 6	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes 🔛 No	☐ Yes 😡 No	☐ Yes ☒ No	☐ Yes ☒ No	☐ Yes ☑ No
DIVERSION BERM 7	☐ Yes ☒ No	☐ Yes ⊠ No	☐ Yes 🗵 No	☐ Yes ☑ No	☐ Yes ☒ No	☐ Yes ☒ No	☐ Yes 💹 No
CHECK DAMS	☐ Yes ☑ No	☐ Yes ☒ No	Yes No	☐ Yes 🖾 No	Yes No	Yes No	Yes No
WEST PERIMETER CHANNEL	☐ Yes ☒ No	Yes No	☐ Yes 💹 No	☐ Yes 🖳 No	☑ Yes ☐ No	Yes No	Yes No
EAST PERIMETER CHANNEL	☐ Yes ☒ No	Yes No	Yes No	☐ Yes 😡 No	Yes □ No	Yes 🗷 No	☐ Yes ☑ No
OTHER DEFICIENCIES? Per, meter cl	nannels a	are com	pletely F	211 of s	nes.		
MAINTENANCE REQUIRED/C	OMMENTS					2	

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION / SEDIMENT DEPTH
DIVERSION BERM OUTFALL I	Unable to inspect due to depth of snow
DIVERSION BERM OUTFALL 2	1 Section of Show
DIVERSION BERM OUTFALL 3	
DIVERSION BERM OUTFALL 4	
DIVERSION BERM OUTFALL 5	
DIVERSION BERM OUTFALL 6	
DIVERSION BERM OUTFALL 7	
WEST PERIMETER CHANNEL OUTFALL	
EAST PERIMETER CHANNEL OUTFALL	
FRENCH DRAIN OUTFALL (SID)	

None	
MAINTENANCE REQUIRED / COMMENTS	
Nene	

		EROSIO	N CONTROL		
AREA		984 - 2	ADVERS	ELY AFFECTING OLF?	
NORTH OF THE ORIGINAL LANDFILL	Yes	⊠ No	COMMENT:	~/4	400
WEST OF THE WEST PERIMETER CHANNEL	Yes	⊠ No	COMMENT:	NIA	
EAST OF THE EAST PERIMETER CHANNEL	☐ Yes	⊠ No	COMMENT:	NA	
NORTH OF WOMAN CREEK	Yes	⊠ No	COMMENT:	NA	
MAINTENANCE REQUIRED		4			
7000					

	- E	INSTI	TUTIONAL CON	TROLS	3.5 % 100	
ITEM			₫			
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	☐ Yes	⊠kNo	COMMENT:	NIA	914(9)16(4), 17. 2. 4.	Contraction of the Contraction o
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	☐ Yes	⊠ No	COMMENT:	NA		otal, kon
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	☐ Yes	⊠ No	COMMENT:	NA		
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	. Yes	⊠ No	COMMENT:	N/A	de filmanana	
OTHER DEFICIENCIES?	: 	10		2	50	
					9	

ACTION ITEMS

DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
	•			
ALINES (1964) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Committee of the second
				0.00
		3/11		
		The second secon		
		1999 ta mari kangangan 1990 dan 1990 d		
		- Harring		

SIGNATURE: 1/18/07

L:\work\57378\Work\Product\OLF\M & M Plan - Final\Appendix A\Final Inspection Report.doc

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

		UBSIDENCE / CONSC	LIDATION	
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	Yes No	☐ Yes 😾 No	☐ Yes ☑ No	NIA
TOP OF COVER – EAST	Yes No	☐ Yes 📈 No	☐ Yes ☒ No	NIA
COVER SIDESLOPE - NORTH	☐ Yes ☑ No	Yes No	☐ Yes 👿 No	S 12
COVER SIDESLOPE - SOUTH	Yes No	Yes No	☐ Yes ☑ No	NIA
EAST FACE SLOPE - NORTH	☐ Yes 📈 No	☐ Yes 🔀 No	☐ Yes ☑ No	NIA
EAST FACE SLOPE - SOUTH	Yes 📈 No	☐ Yes ☑ No	☐ Yes ☒ No	
EAST FACE SLOPE - CENTRAL	☐ Yes 📈 No	☐ Yes 🔀 No	Yes No	NIA
EAST FACE SLOPE - NORTH SEEP*	☐ Yes ☒ No	Yes No	☐ Yes ☒ No	NA
 AINTENANCE REQUIRED / COMMEN	rc			<i>21</i> / <i>k</i>

EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR	
	CIRCULAR FAILURE?	OTHER(DESCRIBE BELOW)
Yes No	☐ Yes ☑ No	NA
Yes No	Yes No	NA
☐ Yes 🔀 No	☐ Yes ☑ No	***************************************
Yes No	Yes No	N/A
☐ Yes 🗷 No	Yes No	NA
☐ Yes ☑ No	☐ Yes ☑ No	NIA
Yes M No	Yes X No	NIA
☐ Yes ☑ No	Yes 🗏 No	NA
ence of cre	chs or block F	ailure duc
	☐ Yes ☒ No	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No

		SOIL COVE	₹	
				-
REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER – WEST	☐ Yes 🔀 No	Yes 🗶 No	☐ Yes 🔀 No	N/A
TOP OF COVER - EAST	Yes No	Yes No	☐ Yes ☒ No	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
COVER SIDESLOPE - NORTH	Yes X No	Yes No	Yes No	N/A N/A
COVER SIDESLOPE - SOUTH	Yes X No	Yes No	☐ Yes ☑ No	
EAST FACE SLOPE - NORTH	☐ Yes 🗵 No	Yes No	Yes No	NA
EAST FACE SLOPE - SOUTH	☐ Yes 🗓 No	Yes No	☐ Yes ☑ No	NA
EAST FACE SLOPE - CENTRAL	☐ Yes 💹 No	Yes No	☐ Yes ☒ No	NIA
AINTENANCE REQUIRED / COMMEN	ITS	1		JU / A
JVONE,				

A STATE OF THE STA	VEGETATION	PLE Vegetation	Jody Nelson
REGION TOP OF COVER - WEST	CONDITION OF GRASS	UNWANTED VEGETATION PRESENT*?	OTHER
TOP OF COVER - EAST		Yes No	(DESCRIBE BELOW)
EAST FACE SLOPE - NORTH		Yes No	
EAST FACE SLOPE - SOUTH		Yes No	
EAST FACE SLOPE - CENTRAL	not done	☐ Yes ☐ No	***************************************
COVER SIDESLOPE - NORTH	This month	Yes No	***************************************
COVER SIDESLOPE - SOUTH	e su	☐ Yes ☐ No	10
1 YHON-LINED PERIMETER CHANNEL - NORTH		Yes No	
TATION LINED PERIMETER CHANNEL SOUTH	en and and an arrangement of the	Yes No	
nted segeration includes weeds and deep-rooting trees.		☐ Yes ☐ No	
ST: 11 Too much snow on mos on top of corn on still be right now no changes would met off!	T of the PLF. Eas	to the veget at in hay in Feb. 71	ditches, + areas
			SADAI WILL

S	SEEP TREATMENT SYSTEM	
EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?	EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
Yes No	☐ Yes ☑ No	N/A
☐ Yes ☑ No	Yes No	N/A
☐ Yes 🔀 No	Yes No	- 10
☐ Yes ເ No	Yes No	N/A
☐ Yes 🗵 No	Yes No	
☐ Yes ☒ No	☐ Yes 💹 No	N/A
☐ Yes 🗵 No	Yes No	NIA
Yes No	Yes No	NA
NA	☐ Yes ☒ No	
MENTS	. I can hear i	+ Flowing though.
	OBSTRUCTIONS, OR EXCESS DEBRIS? Yes No No NA	OBSTRUCTIONS, OR EXCESS DEBRIS? EVIDENCE OF CRACKS OR DETERIORATION?

ST	ORM	WA	TER	MANAGEMENT STRUCTURES	:
inder the		14.000			•

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM	Yes No	☐ Yes 🔀 No	Yes 💹 No	☐ Yes 💹 No	Yes No	Yes No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	Yes No	Yes No	Yes No	Yes No	✓ Yes No	Yes No	☐ Yes ☒ No
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
RIPRAP-LINED PERIMETER CHANNEL	Yes No	Yes No	☐ Yes 🔣 No	☐ Yes ☑ No	Yes No	Yes No	Yes No
C350-LINED EAST FACE	Yes No	Yes No	☐ Yes ☒ No	Yes 🛭 No	☐ Yes ☑ No	☐ Yes ☒ No	Yes No
EAST FACE RIPRAP CHANNEL – NORTH	☐ Yes ☑ No	☐ Yes 🔀 No	Yes No	Yes No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL – SOUTH	☐ Yes ☒ No	Yes No	☐ Yes ☒.No	Yes No	Yes No	Yes No	L Tes 💹 No
OTHER DEFICIENCIES?		-					a
MAINTENANCE REQUIRED CO	OMMENTS S Crc FJ	Il at so	row,				

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION / SEDIMENT DEPTH
DIVERSION BERM OUTFALL - NORTH	Unable to inspect due to snow depth
DIVERSION BERM OUTFALL - SOUTH	1
CULVERT I OUTFALL	
CULVERT 2 OUTFALL	
SOUTHWEST CULVERT OUTFALL	

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT I	All culverts are full of snow
CULVERT 2	
SOUTHWEST CULVERT	

MAINTENANCE RE	EQUIRED
----------------	---------

24.0		(2)	
10	C	-	e

		EROSIC	ON CONTROL		
AREA			ADVERS	SELY AFFECTING PLF?	
RUN-ON INTO PERIMETER CHANNEL – NORTH	Yes	⊠ No	COMMENT:	NA	
RUN-ON INTO PERIMETER CHANNEL – SOUTH	☐ Yes	⊠ No	COMMENT:	NIA	
NATURAL DRAINAGE FED BY CULVERT 1	Yes	⊠ No	COMMENT:	NIA	
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	Yes	⊠ No ·	COMMENT:	NIA	
NATURAL DRAINAGE FED BY RIPRAP	Yes	No	COMMENT:	NIA	
MAINTENANCE REQUIRED					
			==-,		

Harris Anne and a second		INSTI	TUTIONAL CONT	TROLS	
ITEM					
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	Yes	No No	COMMENT:	NIA	
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	Yes	⊠ No	COMMENT:	NIA	
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	Yes	No No	COMMENT:	NA	
DISRUPTION OR DAMAGE OFSEEP TREATMENT SYSTEM?	Yes	⊠ No	COMMENT:	NIA	Manual Control of the
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	☐ Yes	⊠ No	COMMENT:	WIA	
OTHER DEFICIENCIES?					
					8)

ACTION ITEMS

DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
		*		
		Jm		
		The state of the s		
				_
	-			
	***************************************			CONTROL CONTROL OF THE COMMENT OF TH
			1	

SIGNATURE: 1/18/07

L:\work\57378\Work\M&M Plan\Final\Final Inspection Report.doc

ORIGINAL LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

	51	UBSIDENCE / CONSC	DLIDATION	
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	OTHER (DESCRIBE BELOW)
. COVER - WEST	▼Yes □ No	X Yes ☐ No	☐ Yes 🔀 No	cracks and depressions ex
COVER - EAST	☐ Yes 📈 No	Yes No	✓ Yes No	A lurge depression exists
BUTTRESS FILL	☐ Yes 🗵 No	☐ Yes ⋈ No	☐ Yes ☒ No	below been #4
DIVERSION BERM I	✓ Yes □ No	☐ Yes 🛛 No	☐ Yes 🗶 No	The landfill cover is crack
DIVERSION BERM 2	✓ Yes No	¥ Yes □ No	☐ Yes 🏿 No	The cracks from bern #1
DIVERSION BERM 3	☐ Yes ☒ No		Yes No	There are small depressions
DIVERSION BERM 4	☐ Yes ☒ No	Yes No	Yes No	There is a large depression
DIVERSION BERM 5	☐ Yes ☑ No	Yes No	Yes No	on the east side below berm The large depression continu
DIVERSION BERM 6	☐ Yes ☑ No	✓ Yes □ No	Yes No	down to the top of Dermits
DIVERSION BERM 7	☐ Yes ☑ No	Yes No	Yes No	There are small depressions
TENANCE REQUIRED / COMME	NTS	L		above berm #7.

SLOPE STABILITY	

REGION	EVIDENCE OF SEEPS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?
COVER - WEST	X Yes No	¥ Yes □ No	There appears to be a block
COVER – EAST	Yes No	☐ Yes 🗶 No	Failure beginning above berntt!
BUTTRESS FILL SIDESLOPE	Yes No	☐ Yes 🗶 No	There is a significant seep below be small seeps exist below butters
WEST PERIMETER CHANNEL SIDESLOPES	¥ Yes □ No	✓ Yes No	There is slumping that exists on with between bern 5#2 and
EAST PERIMETER CHANNEL SIDESLOPES	Yes No	☐ Yes 🕱 No	NIA
COVER SEEPS (IF PRESENT)	Yes No	☐ Yes ☑ No	OLF COVER

MAINTENANCE REQUIRED / COMMENTS

Engineers are looking at the block failure on the west side of the landfill.

They will determine what maintenance needs to be done. The only

maintenance that has been completed is the placement of plastic

Sheeting above been #1.

		The state of the s	-
COIL	COVER		
2011	COVER		

REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
COVER – WEST	Yes No	Yes No	Yes 🗽 No	There are small crosien
COVER - EAST	Yes No	Yes No	Yes No	middle of the OLF between the Bast and west horms
BUTTRESS FILL	Yes No	Yes 🔀 No	☐ Yes ☑ No	There is a small amount
BUTTRESS FILL SIDESLOPE	☐ Yes 🔀 No	Yes No	Yes No	of erosion along the topot the

MAINTENANCE REQUIRED / COMMENTS

water is still draining off of the OLF between the east and west between 5 Small rills have formed due to this process. Us. will fix these tills as soon as the water is finished draining and the cover dries out.

OLF Vegetation Survey

Surveyor: Cindy Pritekel

VEGETATION

REGION	CONDITION OF GRASS	UNWANTED VEGETATION PRESENT*?	PERCENTAGE OF GRASS VERSUS BARE GROUND?	PERCENTAGE OF UNWANTED VEGETATION?
COVER- WEST	sparse to	Yes 🗌 No	0-70% where no	1. Orning
COVER - EAST	sparse to		0-40%	CEDIT HAK 19/6
DIVERSION BERM 1	sparse to good	Yes No	0-70%	VETH1 C1%
DIVERSION BERM 2	Sparseto	Yes No	0-70%	VETHA <1%
DIVERSION BERM 3	sparse to moderate	Yes 🗌 No	0-50%	CANU1 <1%
DIVERSION BERM 4	sporse to	Yes No	0-50%	CEDI1 41%
DIVERSION BERM 5	Sparse	☐ Yes 🏻 No	0-40%	
DIVERSION BERM 6	sparse to	Yes No	5-40%	GENT 510,00
DIVERSION BERM 7	sparse to	Yes No	0-50%	CEDIT 1 6HACT
WEST PERIMETER CHANNEL	sparse to	Yes No	0-80% where no	Show CENTI 2
EAST PERIMETER CHANNEL	sparse to	☐ Yes 🏹 No	0-70% where not	
UPPER BUTTERESS FILL SIDESLOPE	Smirse	Yes No	0-35% where not	CEDIT, CIA
LOWER BUTTRESS FILL SIDESLPOE	Sporseto	Yes No	0-90%	CEDIL 2%

MAINTENANCE REQUIRED / COMMENTS/PHOTO LOG

Diversion berms 2,3, Le and 7 filled with snow between 10-70% West Perimeter Chamel 90% covered in with snow East Perimeter Chapmel 100% Covered in with snow Water in Corner area of Berm 5-maybe the frogs will move in.

	STORMW	ATER	MANAGEMENT	STRUCTURES
--	--------	------	-------------------	------------

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM I	Yes No	Yes No	Yes No	Yes 🔀 No	Yes 😡 No	Yes No	Yes No
DIVERSION BERM 2	Yes X No	🔀 Yes 🗌 No	Yes No	☐ Yes 🙀 No	Yes No	☐ Yes 🗶 No	Yes No
DIVERSION BERM 3	Yes No	Yes No	Yes 🔀 No	Yes No	Yes No	☐ Yes 🕱 No	Yes No
DIVERSION BERM 4	Yes No	Yes 🗷 No	Yes 😧 No	☐ Yes 🙀 No	☐ Yes 🔀 No	Yes X No	Yes X No
DIVERSION BERM 5	☐ Yes 🗶 No	Yes No	Yes 🔀 No	Yes No	Yes No	☐ Yes ☒ No	Yes No
DIVERSION BERM 6	☐ Yes 🗶 No	Yes No	Yes No	☐ Yes 🔀 No	Yes No	☐ Yes 🗶 No	☐ Yes 🔀 No
DIVERSION BERM 7	☐ Yes 🔀 No	X Yes No	☐ Yes 🔀 No	Yes No	☐ Yes 🔀 No	Yes No	Yes No
CHECK DAMS	☐ Yes 🙀 No	☐ Yes 🙀 No	Yes No	☐ Yes 👿 No	Yes No	☐ Yes ☒ No	☐ Yes 🐼 No
WEST PERIMETER CHANNEL	Yes No	Yes No	✓ Yes No	Yes No	Yes No	Yes No	Yes No
EAST PERIMETER CHANNEL	☐ Yes ☒ No	☐ Yes 😡 No	Yes No	Yes No	Yes No	Yes No	Yes No
OTHER DEFICIENCIES?							
MAINTENANCE REQUIRED/C	COMMENTS	ing the		s for F	ixing the	OLF and	ete

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION / SEDIMENT DEPTH
DIVERSION BERM OUTFALL I	Outfall is in good condition / minimal sediment
DIVERSION BERM OUTFALL 2	
DIVERSION BERM OUTFALL 3	Outfall is ok / minimal scalibrant Outfall is ok / around 1.5" of scalibrant
DIVERSION BERM OUTFALL 4	Outfall is in good condition/ minimal sediment
DIVERSION BERM OUTFALL 5	outfall is in good condition / minimal sediment
DIVERSION BERM OUTFALL 6	Outfall is in good condition/ minimal sedment
DIVERSION BERM OUTFALL 7	Outfall is it good condition / minimal sediment
WEST PERIMETER CHANNEL OUTFALL	Out Fall is in good condition / minimal scaliment
EAST PERIMETER CHANNEL OUTFALL	Outfall is in good condition/minimal Sealiment
FRENCH DRAIN OUTFALL (SID)	Outfall is in good condition / minimal scaling - of

OTHER DEFICIENCIES?

	4 1			
1	V	U	~	C

MAINTENANCE REQUIRED / COMMENTS

We might need to trench the outfall from barm 3 if water starts pooling. Flow is ok right now.

		EROSIC	ON CONTROL
AREA			ADVERSELY AFFECTING OLF?
NORTH OF THE ORIGINAL LANDFILL	Yes	₩ No	
WEST OF THE WEST PERIMETER CHANNEL	Yes	No No	COMMENT: Some pooling water but not much
EAST OF THE EAST PERIMETER CHANNEL	☐ Yes	₩ No	
NORTH OF WOMAN CREEK	Yes	No	COMMENT: Some water draining that FAC. No problem
MAINTENANCE REQUIRED			
None			
, Vivos			

		INSTI	TUTIONAL CO	NTROLS
ITEM				
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	✓ Yes	□ No	COMMENT:	Revegetation activities are taking place to the North and west of the OLF.
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	Yes	No No	COMMENT:	NIA
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	Yes	☑ No	COMMENT:	NIA
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	Yes	No	COMMENT:	NIA
OTHER DEFICIENCIES?				

ACTION ITEMS

DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
	CONTRACTOR CONTRACTOR			
			-	
		-		
			1.	
The second second beautiful to the second se				
		Gonzale Control of the Control of th		
			1	
	1,	and the second s		•

SIGNATURE:	DATE:
------------	-------

L:\work\57378\Work\Product\OLF\M & M Plan - Final\Appendix A\Final Inspection Report.doc

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

INSPECTOR: J. M. Laugh	2.1	DATE:Z/14/	107	
TEMPERATURE: 150F	WEATHER CONDITIONS:	300		
			3	
	SI	UBSIDENCE / CONSC	DLIDATION	
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	Yes No	Yes No	Yes No	NIA
TOP OF COVER - EAST	☐ Yes 🗶 No	Yes No	Yes No	NIA
COVER SIDESLOPE - NORTH	Yes 🔀 No	☐ Yes 😡 No	Yes No	NIA
COVER SIDESLOPE – SOUTH	Yes 🔀 No	☐ Yes 🔯 No	Yes No	N/A
EAST FACE SLOPE - NORTH	Yes No	¥Yes □ No	Yes No	
EAST FACE SLOPE - SOUTH	Yes No	☐ Yes 🗵 No	Yes No	Lurge slump below seep.
EAST FACE SLOPE - CENTRAL	Yes No	Yes 🗷 No	☐ Yes ☒ No	NIA
EAST FACE SLOPE - NORTH SEEP*	Yes No	Yes No	Yes No	N/A

MAINTENANCE REQUIRED / COMMENTS

Engineers are exemining the slump and will decide an required maintenance activities. The slump has been staked to evaluate further movement. It has also been mapped using a GPS unit. Slumping area * AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH Side of the Po-d.

	SLOPE STABI	LITY	
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	OTHER (DESCRIBE BELOW)
COVER SIDESLOPE – NORTH	Yes No	☐ Yes 🗷 No	NIA
COVER SIDESLOPE – SOUTH	Yes No	☐ Yes 👿 No	- Alle Halland
PERIMETER CHANNEL OUTER SLOPE - NORTH	☐ Yes 📈 No	☐ Yes 🔀 No	NA
PERIMETER CHANNEL OUTER SLOPE - SOUTH	☐ Yes 🗷 No	☐ Yes ☑ No	•
EAST FACE SLOPE - NORTH	X Yes □ No	Yes No	Slump cracks extend approximately 60
EAST FACE SLOPE - SOUTH	☐ Yes 🗷 No	Yes 🗷 No	NIA
EAST FACE SLOPE - CENTRAL	☐ Yes 🗷 No	☐ Yes ☒ No	NA
EAST FACE SLOPE – NORTH SEEP*	Yes No	✓ Yes No	Slump is evidence of block Failure
None at this time.			
EA OF SEEP IS OUTSIDE OF LANDFILL COVER AND E.	AST OF THE COVER ANGLIOR TREA		

	SOIL COVE	R	
EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
Yes X No	☐ Yes 🙀 No	Yes X No	A. Carrier and Car
Yes 🗶 No	☐ Yes 🙀 No	☐ Yes 🔯 No	
Yes No	Yes 🔀 No	☐ Yes 🔀 No	
☐ Yes 🔀 No	☐ Yes 👿 No	Yes X No	*
¥ Yes □ No	Yes 📈 No	Yes X No	Slump is believed to be caused by water under min
☐ Yes 📈 No	Yes No	Yes 🔀 No	coused by water under mil
☐ Yes 🗷 No	☐ Yes 😡 No	Yes No	
+ me			
	Yes No Yes No Yes No Yes No No Yes No TS	EVIDENCE OF SOIL DEPOSITION OR EROSION? EVIDENCE OF EROSION RILLS/GULLIES? ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No	DEPOSITION OR EROSION? EROSION RILLS/GULLIES? BURROWING ANIMALS? ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No ☐ Yes ☒ No

REGION TOR OF COURS	CONDITION OF GRASS	WUNWANTED VEGETATION PRESENT*?	OTHER
TOP OF COVER - WEST TOP OF COVER - EAST	moderate to good	Yes No	(DESCRIBE BELOW) CEDI1, VETH1, LIDAI
EAST FACE SLOPE - NORTH	Moderate to and	⊠ Yes □ No	VETH1, CANU1
EAST FACE SLOPE - SOUTH	Sparse to good where the	Me Yes No	VETHL, CEDIL, CIA
EAST FACE SLOPE - CENTRAL	THE WAY	X Vac No	CANUL CESTI, CIA
COVER SIDESLOPE - NORTH	Splyse to good on 10% that is uncovered from snow	Yes No	CEDI1
COVER SIDESLOPE - SOUTH	Sparse to good	⊠ Yes □ No	CEDI1
EGET STION-LINED PERIMETER CHANNEL - NORTH	Sparse to good	Yes No	VETHI, CEDII
EGETATION-LINED PERIMETER CHARLES	Filled in with snow	Yes No MA	Filled in with snow
awanted vegetation includes weeds and deep-rooting trees.	Sparse to good on 25% where there is	· Yes No	75% filled in with snew
INTENANCE REQUIRED/COMMENTS/PHOTO LOG	ho Show		and any of the control of the contro
op of cover completely	clear of snow.		
All unwanted yearth tion	e Slope - North fle sterorded are spe		

SOUTH MANHOLE OUTLET PIPE Yes No Yes No Yes No IREATMENT UNIT Yes No Yes No NO NORTH MANHOLE Yes No Yes No NO NORTH MANHOLE Yes No Yes No NO NORTH MANHOLE Yes No Yes No		S	SEEP TREATMENT SYSTEM	
GWIS INLET PIPES Yes ⋈ No Yes ⋈ No STRIP DRAIN INLET PIPE Yes ⋈ No Yes ⋈ No NORTH MANHOLE OUTLET PIPE Yes ⋈ No Yes ⋈ No SOUTH MANHOLE OUTLET PIPE Yes ⋈ No Yes ⋈ No TREATMENT UNIT Yes ⋈ No Yes ⋈ No TREATMENT UNIT OUTLET PIPE Yes ⋈ No Yes ⋈ No NORTH MANHOLE Yes ⋈ No Yes ⋈ No SOUTH MANHOLE Yes ⋈ No Yes ⋈ No TREATMENT UNIT GRATING NA Yes ⋈ No MAINTENANCE REQUIRED COMMENTS	REGION	OBSTRUCTIONS, OR EXCESS		
Yes No Yes No No Yes No No North Manhole outlet pipe Yes No No Yes No No North Manhole outlet Yes No Yes No No North Manhole outlet Yes No Yes No No North Manhole Yes No Yes No North Manhole Yes North Manhole Yes No North Manhole North Manhole Yes No North Manhole North Manhole Yes No North Manhole Yes North Manhole Yes North Manhole Yes	GWIS INLET PIPES	Yes X No	Yes 🗷 No	rectar with the second of the
NORTH MANHOLE OUTLET PIPE	STRIP DRAIN INLET PIPE	Yes X No	Yes No	
TREATMENT UNIT	CHINATAN CONTRACTOR CONTRACTOR	Yes 🗷 No	☐ Yes 👿 No	
TREATMENT UNIT Yes No Yes No TREATMENT UNIT OUTLET PIPE Yes No Yes No NORTH MANHOLE Yes No Yes No SOUTH MANHOLE Yes No Yes No TREATMENT UNIT GRATING NA Yes No MAINTENANCE REQUIRED / COMMENTS No		☐ Yes 🔣 No		
TREATMENT UNIT OUTLET PIPE Yes No Yes No No NORTH MANHOLE Yes No Yes No NO SOUTH MANHOLE Yes No Yes No NA TREATMENT UNIT GRATING NA Yes No NA	TREATMENT UNIT	Yes No	Yes No	
NORTH MANHOLE Yes No Yes No	TREATMENT UNIT OUTLET PIPE	Yes 🗶 No	Yes No	
SOUTH MANHOLE Yes No Yes No NA Yes No NA Yes No NA Yes No NA NA Yes No NA	NORTH MANHOLE	Yes 🗶 No	Yes No	
TREATMENT UNIT GRATING NA Yes No NA	SOUTH MANHOLE	Yes 🛮 No	Yes No	A. S.
MAINTENANCE REQUIRED / COMMENTS	TREATMENT UNIT GRATING	NA	Yes 🗷 No	
Zvergening looks good.	_	MENTS	9	
	3			4
	9			

STORMWATER MANAGEMENT STRUCTURES

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING
DIVERSION BERM	☐ Yes ☑ No	Yes No	Yes No	☐ Yes ☒ No	Yes No	Yes No	DISPLACEMENT: ☐ Yes No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	☐ Yes ☒ No	Yes No	Yes No	Yes No	Yes No	☐ Yes ☒ No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	Yes No	Yes No	☐ Yes ☒ No	Yes No	☐ Yes ☒ No	Yes No	
RIPRAP-LINED PERIMETER CHANNEL	☐ Yes 🔀 No	☐ Yes ☒ No	Yes No	Yes No	Yes No	Yes No	☐ Yes ☒ No
C350-LINED EAST FACE	Yes No	Yes No	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	Yes No	
EAST FACE RIPRAP CHANNEL - NORTH	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	☐ Yes ☑ No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL – SOUTH	☐ Yes ☑ No	Yes No	☐ Yes ☒ No	Yes No	Yes No	Yes No	Yes No
OTHER DEFICIENCIES?							
MAINTENANCE REQUIRED/CO	DMMENTS						
2							-

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION / SEDIMENT DEPTH
DIVERSION BERM OUTFALL - NORTH	Good condition / No sediment
DIVERSION BERM OUTFALL - SOUTH	bood condition / No sediment
CULVERT I OUTFALL	Good condition / No sediment
CULVERT 2 OUTFALL	bood condition / No sediment
SOUTHWEST CULVERT OUTFALL	Good condition / No sediment

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT I	
CULVERT 2	Culvert is clean with no sediment.
SOUTHWEST CULVERT	(.)
	colvert 100Ks 500d => Some snow in bottom

MAINTENANCE REQUIRED

		EROSIO	N CONTROL	
AREA			ADVE	RSELY AFFECTING PLF?
RUN-ON INTO PERIMETER CHANNEL – NORTH	☐ Yes	⊠ No	COMMENT:	No erosion,
RUN-ON INTO PERIMETER CHANNEL – SOUTH	☐ Yes	⊠ No	COMMENT:	No cresien
NATURAL DRAINAGE FED BY CULVERT 1	Yes	≥ No	COMMENT:	
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	☐ Yes	⊠ No ·	COMMENT:	No etosion.
NATURAL DRAINAGE FED BY RIPRAP	Yes	I∡No	COMMENT:	No erosion
MAINTENANCE REQUIRED	=			
				3

		INSTI	TUTIONAL CON	TROLS	
ITEM					
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	Yes	⊠ No	COMMENT:	NIA	
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	Yes	⊠ No	COMMENT:	~14	
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	Yes	⊠ No	COMMENT:	NA	
DISRUPTION OR DAMAGE OFSEEP TREATMENT SYSTEM?	☐ Yes	⊠.No	COMMENT:	NA	
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	Yes	⊠ No	COMMENT:	NA	
OTHER DEFICIENCIES?					
None.					
				:	

ACTION ITEMS

DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
Slump NE of PLF	2/14/07	Inspected by		No maintenance is
Annual III	2/13/07	Inspected by	•	No maintenance is regulard at this file
		,		
* Committee the committee of the committ				
				100000
			- Mariana de la companio de la comp	*
	1000 000 000 000 000 000 000 000 000 00			
Honorest Commission Co				

 $L: |work| 57378 |Work| M\&M \ Plan| Final |Inspection| \ Report. doc$

ORIGINAL LANDFILL – MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

	SU	JBSIDENCE / CONSC	DLIDATION	
REGION	· EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	OTHER (DESCRIBE BELOW)
COVER – WEST	Yes No	✓ Yes No	☐ Yes ☑ No	There we cracks and depression above and below bern # 1
COVER – EAST	☐ Yes 🔀 No	Yes No	Yes No	95 95
BUTTRESS FILL	☐ Yes ⊠ No	☐ Yes ☑ No	Yes No	Lerge depression below bern #
DIVERSION BERM I	☑ Yes ☐ No	¥ Yes □ No	☐ Yes ☑ No	Cover is cracked above and
DIVERSION BERM 2	☐ Yes ☑ No	Yes 'No	☐ Yes ☒ No	below be- # 1 ? berm is being
DIVERSION BERM 3	☐ Yes 💹 No	Yes No	☐ Yes 🗶 No	Cracks From slump exist on we
DIVERSION BERM 4	☐ Yes ☑ No	X Yes	Yes No	Small depressions on west side Larse depression below berm.
DIVERSION BERM 5	☐ Yes ☒ No	✓ Yes No	Yes No	corse depression above bern
DIVERSION BERM 6	Yes No	☐ Yes ☐ No	☐ Yes ☒ No	on east side.
DIVERSION BERM 7	☐ Yes ☑ No	✓ Yes No	Yes No	small depressions above bein 6
TENANCE REQUIRED / COMME	NTS	опполняния.		Small depressions above berm

REGION	EVIDENCE OF SEEPS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?
COVER – WEST		¥ Yes □ No	Block Failure above and below bern #1.
COVER – EAST	✓ Yes □ No	☐ Yes ☒ No	Longe seep on west end
BUTTRESS FILL SIDESLOPE	¥Yes □ No	☐ Yes ☒ No .	Small Sceps below buttess
WEST PERIMETER CHANNEL SIDESLOPES	✓ Yes □ No	✓ Yes ☐ No	Seep coming out of east of western perimetur channel
EAST PERIMETER CHANNEL SIDESLOPES	☐ Yes No	☐ Yes ☒ No	
COVER SEEPS (IF PRESENT)	⊠ Yes □ No	☐ Yes ⊠ No	Scep # 4 and #7 are most significant-surfacion
Repairs on ben # / Lac	c sterted.		e seep #7.

	The second secon	SOIL COVE	₹	
REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
COVER - WEST	☑ Yes ☐ No	Yes No	☐ Yes 🗷 No	There are small Fills caused by the artesian Flow From
COVER – EAST	☑ Yes ☐ No	☑ Yes ☐ No	Yes No	Scep # 7 in middle of
BUTTRESS FILL	✓ Yes ☐ No	☐ Yes ☑ No	☐ Yes 🗵 No	The state of the s
BUTTRESS FILL SIDESLOPE	☐ Yes 🔀 No	☐ Yes 🗷 No	Yes No	Small rills have formed on b
MAINTENANCE REQUIRED/COMME	#7 continue	is toflow do	wagtadient	From Seep #7. The
water then Fla	ws east aco	ross the top	of the butto	ess then down over
the top on the	east side,	This has ca	used Small a	amounts of exosion. No
maintanence is	regulard.			

ONDITION OF GRASS	UNWANTED VEGETATION PRESENT*?	PERCENTAGE OF GRASS VERSUS BARE	PERCENTAGE OF
		GROUND?	UNWANTED VEGETATION?
	Yes No		
	Yes No		
	Yes No	*	
	Yes No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		(HILLIANDER)
- 10	☐ Yes ☐ No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		
	☐ Yes ☐ No		-0.01010-0.00
			All was the control of the control o
perfor	med due a	to it not be	ng a
- m Pl	med due	to it not be	ng a
	Parkon PI	Yes No Yes No	Yes No

STORMWA	TER MANAGEMENT	STRUCTURES

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM I	✓ Yes No	☑ Yes ☐ No	Yes No	☐ Yes 🔀 No	☐ Yes ☑ No	☐ Yes ☑ No	Yes No
DIVERSION BERM 2	☐ Yes ⊠ No	✓ Yes No	✓ Yes No	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	☐ Yes 😾 No
DIVERSION BERM 3	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	☐ Yes ⊠ No	Yes No	☐ Yes ☑ No	Yes X No
DIVERSION BERM 4	Yes 🗷 No	Yes No	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes 💹 No	Yes X No	☐ Yes 🔛 No
DIVERSION BERM 5	☐ Yes ☑ No	✓ Yes ☐ No	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☒ No	☐ Yes ☑ No
DIVERSION BERM 6	☐ Yes 🗷 No	✓ Yes ☐ No	☐ Yes ☑ No	☐ Yes 🗵 No	☐ Yes ☑ No	☐ Yes ☑ No	Yes K No
DIVERSION BERM 7	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	Yes No	Yes No	☐ Yes 🗵 No	☐ Yes ☑ No
CHECK DAMS	☐ Yes ☑ No	Yes No	☐ Yes ☒ No	☐ Yes 屎 No	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes 🔀 No
WEST PERIMETER CHANNEL	Yes No	✓ Yes ☐ No	☑ Yes ☐ No	☐ Yes 💹 No	✓ Yes ☐ No	Yes No	✓ Yes □ No
EAST PERIMETER CHANNEL	☐ Yes 🗵 No	Yes No	☐ Yes ☑ No	Yes No	✓ Yes ☐ No	☐ Yes ⋈ No	☐ Yes 🗶 No
OTHER DEFICIENCIES?							
Designs to	Fix the	Slemp ing	side of	she wes	itern Petin	reter channo	ell arc
3	W. C. C.						

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

	STRUCTURE	CONDITION / SEDIMENT DEPTH
	DIVERSION BERM OUTFALL I	Good condition / minimal sediment
	DIVERSION BERM OUTFALL 2	Good condition / minimal scaling
	DIVERSION BERM OUTFALL 3	
	DIVERSION BERM OUTFALL 4	
	DIVERSION BERM OUTFALL 5	Good condition / minimal sediment
	DIVERSION BERM OUTFALL 6	bood condition/ minimal sediment
	DIVERSION BERM OUTFALL 7	Good condition / minimal sediment
	WEST PERIMETER CHANNEL OUTFALL	Good condition / minimal sediment
	EAST PERIMETER CHANNEL OUTFALL	Good condition / minimal sediment
ļ	FRENCH DRAIN OUTFALL (SID)	Good condition/ minimal scdiment

OTHER DEFICIENCIES?	
Nuce	
	-
MAINTENANCE REQUIRED / COMMENTS	a
We trenched along the trough of bern #3 and did th	e same to the
outfall Flow along born #3 is now normal with no	pooling.

EROSION CONTROL				
AREA			ADVE	RSELY AFFECTING OLF?
NORTH OF THE ORIGINAL LANDFILL	Yes	⊠ No	COMMENT:	
WEST OF THE WEST PERIMETER CHANNEL	Yes	☑ No	COMMENT:	Still some water pooled. No problem
EAST OF THE EAST PERIMETER CHANNEL	Yes	No.	COMMENT:	~/A
NORTH OF WOMAN CREEK	Yes	☑ No	COMMENT:	~IA
MAINTENANCE REQUIRED				
¥				
		17/		

		INSTI	TUTIONAL CO	NTROLS
A 6.2960 10				
ITEM	-			
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	⊠ Yes	☐ No	COMMENT:	Installed Settlement Monuments @ 5 locat Repairing cracks and grade on barms
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	☐ Yes	☑ No	COMMENT:	N/A
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	☐ Yes	⊠ No	COMMENT:	NIA
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	Yes	⊠ No	COMMENT:	NIA
OTHER DEFICIENCIES?		13 to 4 mg		
None.		2		
		#I		

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

EVIDENCE OF	EVIDENCE OF	EVIDENCE OF SINK	OTHER
CRACKS?	DEPRESSIONS?	HOLES?	(DESCRIBE BELOW)
Yes No	Yes No	Yes No	214
Yes No	☐ Yes ☑ No	☐ Yes ☑ No	N/A
☐ Yes ⊠ No	☐ Yes 🐷 No	☐ Yes ☑ No	NA
☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☑ No	NA
Yes No	☐ Yes 💹 No	☐ Yes ☑ No	NA
☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☑ No	NA
☐ Yes 🗵 No	☐ Yes ☑ No	☐ Yes ☑ No	NIA
☐ Yes ☑ No	Yes No	☐ Yes ☑ No	NA
		4	
	EVIDENCE OF CRACKS? Yes No	EVIDENCE OF CRACKS? EVIDENCE OF DEPRESSIONS? ☐ Yes ☑ No ☐ Yes ☑ No ☐ Yes ☑ No ☐ Yes ☑ No	CRACKS? DEPRESSIONS? HOLES? Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No Yes ⋈ No

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	OTHER (DESCRIBE BELOW)
COVER SIDESLOPE – NORTH	☐ Yes 🗵 No	Yes No	~ 14
COVER SIDESLOPE – SOUTH	☐ Yes ☑ No	☐ Yes ☒ No	~/4
ERIMETER CHANNEL OUTER SLOPE - NORTH	Yes No	Yes No	~/A
ERIMETER CHANNEL OUTER SLOPE – SOUTH	☐ Yes ☑ No	☐ Yes 🔛 No	~/A
EAST FACE SLOPE - NORTH	☐ Yes ☑ No	☐ Yes ☑ No	~)A
EAST FACE SLOPE - SOUTH	☐ Yes ☒ No	☐ Yes ☑ No	NA
EAST FACE SLOPE - CENTRAL	☐ Yes ☑ No	☐ Yes ☒ No	~/A
EAST FACE SLOPE - NORTH SEEP*	Yes No	☐ Yes ☒ No	2/4
ENANCE REQUIRED / COMMENTS			

^{*} AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

		SOIL COVE	R	
REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	☐ Yes 😡 No	☐ Yes 🖾 No	☐ Yes 🗵 No	NH
TOP OF COVER – EAST	☐ Yes ☑ No	Yes No	☐ Yes ☒ No	NA
COVER SIDESLOPE - NORTH	Yes No	Yes No	Yes No	~/A
COVER SIDESLOPE – SOUTH	☐ Yes ☑ No	☐ Yes 🗵 No	Yes No	N/A
EAST FACE SLOPE - NORTH	☐ Yes ☑ No	☐ Yes 👿 No	Yes No	NIA
EAST FACE SLOPE - SOUTH	☐ Yes ☑ No	☐ Yes ⊠ No	Yes No	NIA
EAST FACE SLOPE - CENTRAL	☐ Yes ☑ No	Yes No	Yes No	NIA
Nunc. There is	a small a			re base of the sl

REGION	CONDITION OF GRASS	UNWANTED VEGETATION	OTHER
TOP OF COVER - WEST	moderate to good	PRESENT*?	(DESCRIBE BELOW)
TOP OF COVER - EAST	Moderate to 0 - 1	Yes No	VETH1
EAST FACE SLOPE - NORTH	moderate to good	Yes No	VETH1, CEDI1, I
EAST FACE SLOPE - SOUTH	sparse to moderate	Yes No	CEDIT, VETHAL
FAST FACE SLOPE - CENTRAL	sparse to moderate	☑ Yes ☐ No	CEDI 1
	Sparse to medonate	Yes No	Carl
COVER SIDESLOPE - NORTH	Sparse to good on & trong	☑ Yes ☐ No	CEDT1
COVER SIDESLOPE - SOUTH	Sparse on 8-Pacing slope		VETH1, CANUI
GETATION-LINED PERIMETER CHANNEL - NORTH	Son and Stope	Yes No	LIDA1, VETHI
GET VIION-LINED PERIMETER CHANNEL SOUTH	Sparse in Channel	Yes No	CEDI1
scaled vegetation includes weeds and deep-rooting trees.	Sparse in channel	Yes No	TIL SAME TO THE SA
Completely Clar o	f snow	S. 2010ml	

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?	EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
GWIS INLET PIPES	Yes No	Yes No	~!}
STRIP DRAIN INLET PIPE	☐ Yes 🗷 No	Yes No	~/A
ORTH MANHOLE OUTLET PIPE	☐ Yes 【 No	☐ Yes ☑ No	
SOUTH MANHOLE OUTLET PIPE	Yes No	☐ Yes ☒ No	N/A
TREATMENT UNIT	Yes 🗷 No	☐ Yes ☑ No	~/A
REATMENT UNIT OUTLET PIPE	Yes K No	Yes No	~/A
NORTH MANHOLE	Yes 🔣 No	Yes No	~ /A
SOUTH MANHOLE	☐ Yes ∡ No	☐ Yes ☒ No	NA
TREATMENT UNIT GRATING	NA	Yes No	
TREATMENT UNIT GRATING AINTENANCE REQUIRED / COMM		☐ Yes ☑ No	NIA

STORMWATER MANAGEMENT STRUCTURES

CHANNELS / LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT:
DIVERSION BERM	☐ Yes 🗵 No	☐ Yes 🗷 No	☐ Yes 🖼 No	☐ Yes 🖼 No	Yes No	Yes 🗵 No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	☐ Yes ☑ No	☐ Yes 🗵 No	☐ Yes ☒ No	☐ Yes 🔣 No	☐ Yes 👿 No	Yes No	☐ Yes ☑ No
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	☐ Yes 🏿 No	Yes 📈 No	Yes 🗶 No	☐ Yes ☒ No	☐ Yes ☑ No	☐ Yes ☑ No	Yes No
RIPRAP-LINED PERIMETER CHANNEL	Yes No	☐ Yes 😠 No	Yes No	☐ Yes ☑ No	☐ Yes ☑ No	☐ Yes ☒ No	Yes X No
C350-LINED EAST FACE	☐ Yes ☒ No	Yes 🗷 No	Yes No	Yes No	☐ Yes ☑ No	☐ Yes ☒ No	☐ Yes 💹 No
EAST FACE RIPRAP CHANNEL – NORTH	☐ Yes 🖳 No	Yes No	☐ Yes ☒ No	Yes No	Yes No	☐ Yes ☒ No	Yes No
EAST FACE RIPRAP CHANNEL – SOUTH	☐ Yes ☒ No	☐ Yes 🗔 No	Yes X No	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	
OTHER DEFICIENCIES?		(F					
MAINTENANCE REQUIRED / CO	OMMENTS						
	·						10 mm

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION / SEDIMENT DEPTH		
DIVERSION BERM OUTFALL - NORTH	Good condition / No sediment		
DIVERSION BERM OUTFALL - SOUTH	Good condition / No sed ment		
CULVERT I OUTFALL	Good Condition / No Sediment		
CULVERT 2 OUTFALL	Good condition / No sed ment		
SOUTHWEST CULVERT OUTFALL	Good in disign / No sed . I		

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT I	Culvert is clean => No sediment
CULVERT 2	Colvert is clean => No sediment
SOUTHWEST CULVERT	Culvert is clean => No sediment

MAINTENANCE REQUIRED		
None.		

EROSION CONTROL				
AREA			ADVER	SELY AFFECTING PLF?
RUN-ON INTO PERIMETER CHANNEL – NORTH	Yes	☑ No	COMMENT:	Looks good.
RUN-ON INTO PERIMETER CHANNEL – SOUTH	Yes	⊠ No	COMMENT:	Looks good.
NATURAL DRAINAGE FED BY CULVERT 1	Yes	⊠ No	COMMENT:	Looks good.
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	Yes	⊠ No	COMMENT:	Looks good
NATURAL DRAINAGE FED BY RIPRAP	Yes	⊠ No	COMMENT:	Looks good.
None.				

INSTITUTIONAL CONTROLS						
ITEM						
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	Yes	[☑ No	COMMENT:		sharanda	
EVIDENCE OF CONSTRUCTION OF ROADS, TRAILS ON COVER OR BUILDINGS?	Yes	⊠ No	COMMENT:	~/A		
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	Yes	✓ No	COMMENT:	NIA	•	The state of the s
DISRUPTION OR DAMAGE OFSEEP TREATMENT SYSTEM?	☐ Yes	No No	COMMENT:	NA		*
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	Yes	☑ No	COMMENT:	NA		
OTHER DEFICIENCIES?						
None					5:	
2						

ACTION ITEMS

DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
	·	100000000000000000000000000000000000000		
		- Annual Marian		
		Jm		
	D COM AND SPECIFIC STATE OF THE			
			The state of the s	·
		1		

SIGNATURE DATE: 3/27/07

L:\work\57378\Work\M&M Plan\Final\Final\Inspection Report.doc

Appendix D

Data Evaluation Flowcharts Reproduced from the RFLMA and the RFSOG

¹ Appropriate Compliance Values by locations and analytes (see Table 2 for reference)

- All Indiana Street POCs:
- plutonium, americium, uranium → 30-day average²
- All Terminal Pond POCs:
 - plutonium, americium, uranium → 12-month rolling average³
- Walnut Creek at Indiana Street POCs:
 - nitrate → 85th percentile of 30-day averages³ for previous calendar year
- Walnut Creek Terminal Pond POCs:
 - o nitrate → 12-month rolling average²

The 30-day average for a particular day is calculated as a volume-weighted average of a "window" of time containing the previous 30 days with measurable flow. Each day has its own discharge volume (measured with a flow meter) and activity/concentration (from the sample carboy in place at the end of that day). Therefore, there are 365 30-day moving averages for a location that flows all year. At locations that have intermittent flows, 30-day averages are reported as averages of the previous 30 days of greater than zero flow. For days where no analytical result is available, either due to failed laboratory analysis or non-sufficient quantity (NSQ) for analysis, no 30-day average is reported.

The 12-month rolling average for the last day of a particular month is calculated as a volume-weighted average of a "window" of time containing the previous 12 months. Each 12-month "window" includes daily discharge volumes (measured with a flow meter) and daily activities/concentrations (from the sample carboy in place at the end of that day). Therefore, there are twelve 12-month rolling averages for a given calendar year. Days with no flow or no analytical result, either due to failed laboratory analysis or NSQ for analysis, are not included in the average. When no flow has occurred in the previous 12 months, no 12-month rolling average is reported.

⁴ Agencies: EPA, CDPHE, and USFWS Public: Cities of Broomfield, Northglenn, Thornton, and Westminster; Rocky Flats Stewardship Council (RFSC)

Figure 5. Points of Compliance

- plutonium, americium, uranium → 12-month rolling average²
- dissolved Cd and Ag, total Be and Cr → 85th percentile of 30-day averages³ for previous calendar year

The 30-day average for a particular day is calculated as a volume-weighted average of a "window" of time containing the previous 30-days with measurable flow. Each day has its own discharge volume (measured with a flow meter) and activity/concentration (from the sample carboy in place at the end of that day). Therefore, there are 365 30 day moving averages for a location that flows all year. At locations that have intermittent flows, 30-day averages are reported as averages of the previous 30 days of greater than zero flow. For days where no analytical result is available, either due to failed laboratory analysis or NSQ for analysis, no 30-day average is reported.

The 12-month rolling average for the last day of a particular month is calculated as a volume-weighted average of a "window" of time containing the previous 12 months. Each 12-month "window" includes daily discharge volumes (measured with a flow meter) and daily activities/concentrations (from the sample carboy in place at the end of that day). Therefore, there are twelve 12-month rolling averages for a given calendar year. Days with no flow or no analytical result, either due to failed laboratory analysis or NSQ for analysis, are not included in the average. When no flow has occurred in the previous 12 months, no 12-month rolling average is reported.

⁴ Agencies: EPA, CDPHE, and USFWS Public: Cities of Broomfield, Northglenn, Thornton, and Westminster; Rocky Flats Stewardship Council (RFSC)

Figure 6. Points of Evaluation

¹ Appropriate Compliance Values by analytes (see Table 2 for reference)

- AOC wells and location SW018 are sampled twice each year; see Table 2.
- Boundary wells are sampled once each year; see Table 2. These wells are not part of the remedy, but are a component of
 operational monitoring.
- Decisions related to uranium in ground water are based upon a 16 ug/L threshold for Boundary wells (basis: the 11 pCi/L standard) and a 120 ug/L threshold for AOC wells (basis: a grand mean of results from Site-wide high-resolution uranium analyses performed in the late 1990s through mid-2000s), rather than the standard in Table 1.

Figure 7. Area of Concern Wells, Boundary Wells, and SW018

- Sentinel wells are sampled twice each year; see Table 2.
- Decisions related to uranium are based upon a 120 ug/L threshold for AOC wells (basis: a grand mean of results from Site-wide high-resolution uranium analyses performed in the late 1990s through mid-2000s), rather than the standard in

- Sentinel Well Criteria

 1. The 85th percentile concentration of an analyte *is less than or equal to* the corresponding concentration in Table 1 or, for uranium, the 85th percentile concentration does not exceed 2x120 ug/L or the highest calendar year 2005 concentration,
 - 2. Analyte concentrations exhibit an indeterminate or statistically-significant decreasing trend at the 95% confidence level.

Figure 8. Sentinel Wells

Evaluation wells are listed in Table 2.

Evaluation Well Criteria:

- The 85th percentile concentration of an analyte is less than or equal to the corresponding concentration in
- Table 1, or, for uranium, 240 ug/L or highest pre-CY05 concentration, whichever is higher.

 Analyte concentrations exhibit an indeterminate or statistically-significant decreasing trend at the 95% confidence level.

Figure 9. Evaluation Wells

Figure 10. RCRA Wells

Figure 11. Groundwater Treatment Systems

Figure 12. Original Landfill Surface Water

Figure 13. Pre-discharge Pond Sampling

Figure 6-15. Investigative Monitoring Flowchart (from the RFSOG)